Citation: | Peng Xiaodong, Zhang Hui, Wang Xinguang, Zhao Nan, Wang Lei, Zhang Hengrong, Yang Chaoqiang, Chu Shasha, Sun Lei, Yang Yu, 2023. Enhanced Water⁃Drive Recovery Based on Microscopic Seepage Mechanism for Low Permeability Glutenite Reservoir with Ternary Pore⁃Throat Structure Characteristics of WS Field. Earth Science, 48(8): 2960-2978. doi: 10.3799/dqkx.2023.032 |
Al-Saedi, H., Flori, R., 2018. Enhanced Oil Recovery of Low Salinity Water Flooding in Sandstone and the Role of Clay. Petroleum Exploration and Development, 45(5): 869-873(in Chinese with English abstract).
|
Chen, R., Qu, Z. H., Zhao, Y., 2001. Research Status of Reservoir Wettability and Its Influence on Oil Recovery. China Offshore Oil and Gas (Geology), 15(5): 350-355(in Chinese with English abstract).
|
Chen, S. R., Qu, X. Y., Li, J. J., et al., 2019. Dissolution of Feldspar by Organic Acids Expelled from Thermal Evolution of Shale: Taking the Fourth Member of Shahejie Formation in Damintun Depression as an Example. Chinese Science and Technology Papers, 14(1): 116-123(in Chinese with English abstract).
|
Chen, T. P., Cui, Z. S., Zhang, X. J., 2009. Experimental Study on the Influence of Wettability on the Recovery of Low-Permeability Reservoirs. Journal of Xi'an Shiyou University: Natural Science Edition, 24(6): 42-45(in Chinese with English abstract).
|
Fang, N., Jiang, G. H., Cheng, Q., et al., 2020. Optimization of Water Injection in Fractured Reservoir under Different Water Breakthrough Modes. Fault-Block Oil & Gas Field, 27(5): 633-637(in Chinese with English abstract).
|
Ji, S. H., Tian, C. B., Shi, C. F., et al., 2012. Re-Understanding of Water Flooding Efficiency in High WaterCut Stage. Petroleum Exploration and Development, 39(3): 338-345(in Chinese with English abstract).
|
Jiang, M. X., 1995. The Influence of Reservoir Rock Wettability on Recovery Factor. Petroleum Geology and Recovery Efficiency, (3): 25-31(in Chinese with English abstract).
|
Lei, H., Ma, Y. X., Zhang, H., et al., 2017. Water Sensitive Mechanism of Wushi 17-2 Low-Permeability Glutenite Reservoir and its Influence on Oil-Water Two-Phase Flow. Complex Oil and Gas Reservoirs, 10(1): 55-59(in Chinese with English abstract).
|
Li, C. L., 2007. The Effect of Pore-Throat Ratio on Formation Permeability. Petroleum Geology and Recovery Efficiency, 14(5): 78-79+87(in Chinese with English abstract).
|
Li, F. K., 1980. The Influence of Clay Minerals in Sandstone Reservoirs on Reservoir Properties. Petroleum Exploration and Development, (6): 67-79(in Chinese with English abstract).
|
Li, H. T., Ma, Q. R., Li, D. H., 2017. Microscopic Mechanisms of Low Salinity Water Injection Technology for Sandstone Reservoir EOR. Oil Drilling & Production Technology, 39(2): 151-157(in Chinese with English abstract).
|
Lin, M. Q., Hua, Z., Li, M. Y., 2018. Surface Wettability Control of Reservoir Rocks by Brine. Petroleum Exploration and Development, 45(1): 136-144(in Chinese with English abstract). doi: 10.1016/S1876-3804(18)30013-2
|
Liu, Z. Y., Li, Y. Q., Leng, R. X., et al., 2020. The Effect of Pore Structure on Enhanced Oil Recovery of Conglomerate Reservoirs with Surface-Polymerized Binary Combination Flooding. Petroleum Exploration and Development, 47(1): 129-139(in Chinese with English abstract).
|
Peng, X. D., Zhang, H., Wang, X. G., et al., 2020. Reservoir Characteristics and Comprehensive Evaluation of Wushi A Glutenite Reservoir. Frontiers of Marine Geology. 36(8): 50-56(in Chinese with English abstract).
|
Peng, Z. C., Yang, L., Wang, X. G., et al., 2017. Research on Main Controlling Factors of Glutenite Reservoir Properties of the Third Member of Liushagang Formation in Wushi 17-X Oilfield, Beibu Gulf Basin. Science Technology and Engineering, 17(10): 6-12(in Chinese with English abstract).
|
Song, J. F., Xie, S. Y., Zheng, H. A., et al., 2019. Research and Application of Marine Nanofiltration Water Treatment Technology. Industrial Water Treatment, 39(2): 86-88, 105(in Chinese with English abstract).
|
Su, Y. C., Zhu, Z. Q., 2019. Percolation Characteristics and Unstable Water Injection Strategy of Fractured Buried Hill Reservoir: Taking the Buried Hill Reservoir in Bohai JZ25-1S Oilfield as an Example. China Offshore Oil and Gas, 31(6): 78-85(in Chinese with English abstract).
|
Sun, L., Wei, J., Li, H., et al., 2017. Evaluation of Water/Gas Injection Long Core Displacement Effect in Low-permeability Glutenite Reservoirs and Selection of Options. Reservoir Evaluation and Development, 7(6): 26-33(in Chinese with English abstract).
|
Wang, L., Zhang, H., Peng, X. D., et al., 2019. Water-Sensitive Damage Mechanism of Low-Permeability Glutenite Reservoir and Optimization of Injected Water Source. Petroleum Exploration and Development, 46(6): 1-11(in Chinese with English abstract).
|
Wang, Y. Q., Yu, H. M., Nie, J., et al., 2017. Study on the Relative Permeability Curve of Chemical Flooding Based on the Theory of Expanded Capillary Number. Oil and Gas Geology, 38(2): 379-384(in Chinese with English abstract).
|
Xu, C. F., Liu, H. X., Qian, G. B., et al., 2011. Microscopic Water Drive Mechanism of Karamay Conglomerate Reservoirs. Petroleum Exploration and Development, 38(6): 725-732(in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60006-8
|
Yang, Y., Yuan, W., Yang, D., et al., 2019. Microgenetic Mechanism of Low-Resistivity Oil Layers in Wushi Sag, Beibu Gulf Basin. Journal of Southwest Petroleum University: Natural Science Edition, 41(4): 81-89(in Chinese with English abstract).
|
Yang, Z. M., Huang, H., Luo, Y. T., et al., 2017. A New Method for Testing the Mixed Wettability of Tight Oil Reservoirs and Its Application. Acta Petrolei Sinica, 38(3): 318-323(in Chinese with English abstract).
|
Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943(in Chinese with English abstract).
|
Yuan, X. Q, Yao, G. Q., Jiang, P., et al., 2017. Provenance Analysis for Liushagang Formation of Wushi Depression, Beibuwan Basin, the South China Sea. Earth Science, 42(11): 2040-2054(in Chinese with English abstract).
|
Yuan, X. Q., Yao, G. Q., Yang, X. H., 2019. Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag. Earth Science, 44(3): 909-918(in Chinese with English abstract).
|
Zeng, X. M., Zou, M. SH., Zhang, H., et al., 2016a. The Main Controlling Factors and Distribution Law of Reservoir Physical Properties in the Third Member of Liushagang Formation in the East Area of Wushi Sag, Beibu Gulf Basin. Petroleum Geology and Experiment, 38(6): 757-764(in Chinese with English abstract).
|
Zeng, X. M., Zhang, H., Zou, M. S., et al., 2017. Reservoir Classification Evaluation Based on Petrophysical Facies: Taking the Second Oil Group of the Third Member of the Eocene Liushagang Formation in the East Area of Wushi Sag, Beibu Gulf Basin as an Example. Journal of Palaeogeography, 19(4): 703-712(in Chinese with English abstract).
|
Zeng, X. M., Zhang, H., Zou, M. S., et al., 2016b. Provenance Analysis of the Third Member of Liu Member in the East Area Of Wushi Sag, Beibu Gulf Basin and Its Control on Reservoir Physical Properties. Geological Science and Technology Information, 35(6): 69-75(in Chinese with English abstract).
|
Zhang, C. H., 2019. Based on the Cause Analysis and Logging Evaluation of the Low Permeability of Offshore Glutenite. Logging Technology, 43(5): 524-530(in Chinese with English abstract).
|
Zhang, H. R., He, S. L., Ding, L., et al., 2020. Analysis of the Low Resistivity of the Gravel-Bearing Sandstone Reservoir in the Third Member of the Wu Oil Field. China Offshore Oil and Gas, 32(3): 69-76(in Chinese with English abstract).
|
Zhang, H. R., He, S. L., Zheng, X. W., et al., 2018. A New Method for Interpreting Water Saturation of Low-Resistivity Oil Layers with Complex Pore Structure. Journal of Southwest Petroleum University (Natural Science Edition), 40 (1): 97-103(in Chinese with English abstract).
|
Zhao, N., Wang, L., Huang, J., et al., 2020a. Comparison of Fractal Characteristics and Genetic Analysis of Low-Permeability Reservoirs with Different Lithologies. China Offshore Oil & Gas, 32(1): 87-94(in Chinese with English abstract).
|
Zhao, N., Wang, L., Sun, L., et al., 2020b. Indoor Evaluation of Gas Injection Development for Low-Permeability Reservoirs with Different Injected Gases. Science Technology and Engineering, 20(4): 1379-1385(in Chinese with English abstract).
|
Zhu, G. H., 1988. The Influence of Clay Minerals on the Properties of Mesozoic Sandstone Reservoirs in the Shaan-Gan-Ning Basin and its Significance. Petroleum Exploration and Development, (4): 24-33(in Chinese with English abstract).
|
Al-Saedi H., Flori R., 2018. 砂岩储集层低矿化度水驱提高采收率机理及黏土对采收率的影响. 石油勘探与开发, 45(5): 869-873. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805015.htm
|
陈蓉, 曲志浩, 赵阳, 2001. 油层润湿性研究现状及对采收率的影响. 中国海上油气(地质), 15(5): 350-355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200105009.htm
|
陈思芮, 曲希玉, 李吉君, 等, 2019. 泥页岩热演化所排有机酸对长石的溶蚀作用——以大民屯凹陷沙四段为例. 中国科技论文, 14(1): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201901020.htm
|
陈涛平, 崔志松, 张晓娇, 2009. 润湿性对低渗透油层采收率影响的实验研究. 西安石油大学学报: 自然科学版, 24(6): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200906011.htm
|
房娜, 姜光宏, 程奇, 等, 2020. 裂缝性油藏不同见水模式下的注水优化. 断块油气田, 27(5): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202005020.htm
|
纪淑红, 田昌炳, 石成方, 等, 2012. 高含水阶段重新认识水驱油效率. 石油勘探与开发, 39(3): 338-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203011.htm
|
蒋明煊, 1995. 油藏岩石润湿性对采收率的影响. 油气地质与采收率, 2(3): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS503.004.htm
|
雷昊, 马勇新, 张辉, 等, 2017. 乌石17-2低渗砂砾岩油藏水敏机理及对油水两相渗流的影响. 复杂油气藏, 10(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201701011.htm
|
李传亮, 2007. 孔喉比对地层渗透率的影响. 油气地质与采收率, 14(5): 78-79+87. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200705025.htm
|
李福垲, 1980. 砂岩油层中粘土矿物对储层性质的影响. 石油勘探与开发, (6): 67-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198006009.htm
|
李海涛, 马启睿, 李东昊, 2017. 低矿化度注水提高砂岩储集层采收率的微观机理. 石油钻采工艺, 39(2): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201702007.htm
|
林梅钦, 华朝, 李明远, 2018. 利用盐水调节油藏岩石表面润湿性. 石油勘探与开发, 45(1): 136-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801015.htm
|
刘哲宇, 李宜强, 冷润熙, 等, 2020. 孔隙结构对砾岩油藏聚表二元复合驱提高采收率的影响. 石油勘探与开发, 47(1): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001013.htm
|
彭小东, 张辉, 汪新光, 等, 2020. 乌石A砂砾岩油藏储层特征及综合评价. 海洋地质前沿. 36(8): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202008007.htm
|
彭志春, 杨丽, 汪新光, 等, 2017. 北部湾盆地乌石17-X油田流沙港组三段砂砾岩储层物性主控因素研究. 科学技术与工程, 17(10): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201710002.htm
|
宋吉锋, 谢思宇, 郑华安, 等, 2019. 海上纳滤水处理技术研究与应用. 工业水处理, 39(2): 86-88, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201902025.htm
|
苏彦春, 朱志强, 2019. 裂缝性潜山油藏渗流特征及不稳定注水策略——以渤海锦州25-1南油田潜山油藏为例. 中国海上油气, 31(6): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201906009.htm
|
孙雷, 魏瑾, 李浩, 等, 2017. 低渗砂砾岩油藏注水/注气长岩心驱替效果评价及方案优选. 油气藏评价与开发, 7(6): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201706005.htm
|
王磊, 张辉, 彭小东, 等, 2019. 低渗透砂砾岩油藏水敏伤害机理及注入水水源优选. 石油勘探与开发, 46(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906013.htm
|
王友启, 于洪敏, 聂俊, 等, 2017. 基于扩展毛管数理论的化学驱相渗曲线研究. 石油与天然气地质, 38(2): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702021.htm
|
许长福, 刘红现, 钱根宝, 等, 2011. 克拉玛依砾岩储集层微观水驱油机理. 石油勘探与开发, 38(6): 725-732. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201106011.htm
|
杨毅, 袁伟, 杨冬, 等, 2019. 北部湾盆地乌石凹陷低阻油层微观成因机理. 西南石油大学学报: 自然科学版, 41(4): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201904009.htm
|
杨正明, 黄辉, 骆雨田, 等, 2017. 致密油藏混合润湿性测试新方法及其应用. 石油学报, 38(3): 318-323. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703008.htm
|
姚光庆, 姜平. 2021. 储层"源-径-汇-岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
|
袁晓蔷, 姚光庆, 姜平, 等, 2017北部湾盆地乌石凹陷东部流沙港组物源分析. 地球科学, 42(11): 2040-2054. doi: 10.3799/dqkx.2017.130
|
袁晓蔷, 姚光庆, 杨香华, 等, 2019. 自生粘土矿物对文昌A凹陷深部储层的制约. 地球科学, 44(3): 909-918. doi: 10.3799/dqkx.2018.368
|
曾小明, 张辉, 邹明生, 等, 2016a. 北部湾盆地乌石凹陷东区流三段物源分析及其对储层物性的控制. 地质科技情报, 35(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201606010.htm
|
曾小明, 张辉, 邹明生, 等, 2017. 基于岩石物理相的储集层分类评价: 以北部湾盆地乌石凹陷东区始新统流沙港组三段Ⅱ油组为例. 古地理学报, 19(4): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201704012.htm
|
曾小明, 邹明生, 张辉, 等, 2016b. 北部湾盆地乌石凹陷东区流沙港组三段储层物性主控因素及分布规律. 石油实验地质, 38(6): 757-764. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606009.htm
|
张冲. 2019. 基于海上砂砾岩低渗透率成因分析及测井评价. 测井技术, 43(5): 524-530. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905017.htm
|
张恒荣, 何胜林, 丁磊, 等, 2020. 乌石油田流三段含砾砂岩油层低阻成因分析. 中国海上油气, 32(3): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003008.htm
|
张恒荣, 何胜林, 郑香伟, 等, 2018. 复杂孔隙结构低阻油层含水饱和度解释新方法. 西南石油大学学报(自然科学版), 40 (1): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201801010.htm
|
赵楠, 王磊, 黄俊, 等, 2020a. 不同岩性低渗储层分形特征对比及成因分析. 中国海上油气, 32(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001010.htm
|
赵楠, 王磊, 孙雷, 等, 2020b. 不同注入气体下低渗油藏注气开发室内评价. 科学技术与工程, 20(4): 1379-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202004013.htm
|
朱国华, 1988. 粘土矿物对陕甘宁盆地中生界砂岩储层性质的影响及其意义. 石油勘探与开发, (4): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198804002.htm
|