• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 2
    Feb.  2023
    Turn off MathJax
    Article Contents
    Lin Qing, Hao Jianrong, Wang Ke, 2023. Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin. Earth Science, 48(2): 719-734. doi: 10.3799/dqkx.2023.038
    Citation: Lin Qing, Hao Jianrong, Wang Ke, 2023. Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin. Earth Science, 48(2): 719-734. doi: 10.3799/dqkx.2023.038

    Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin

    doi: 10.3799/dqkx.2023.038
    • Received Date: 2023-01-02
    • Publish Date: 2023-02-25
    • Distribution of oil and gas/condensate fields is characterized with the feature of "large hydrocarbon reserves and heavy oil density in deep-water zone, while small hydrocarbon reserves and light oil density in relative shallow water area". Light oil reservoirs (with oil density of 36-58 API°) or gas/condensate reservoirs are located in the proximal shallow water area within the water depth of 1000 m with small hydrocarbon reserves, and oil fields in deep water area with water depth more than 1500 m, are mainly of normal oil (with oil density of 25-32 API°). The distribution of oil and gas fields is constrained by the nature of pre-salt and post-salt source rocks, source rock maturity and salt development. Lacustrine source rocks pre-salt with type Ⅰ organic matter are prone to oil, and of the high or over mature stage in central depression and of the mature stage in eastern deep-water area. Marine source rocks post-salt mainly of type Ⅱ2-Ⅲ kerogen are prone to light oil and gas, with the maturity of late oil window stage in central depression and western are of Santos basin. Studies show that light oils and gas condensate oils of post-salt reservoirs are originated from marine source rocks post salt of high maturity, while oils from deep water and north area of central depression mainly came from pre-salt high quality lacustrine source rocks of medium maturity. Constraining on the characteristic and origin of hydrocarbon of Santos Basin, is helpful to understand the principle of hydrocarbon distribution, generation and accumulation in Santos Basin thoroughly, and it also make significant sense to optimize potential blocks and reduce the risk of investment.

       

    • loading
    • Brassell, S. C., Eglinton, G., Howell, V. J., 1987. Palaeoenvironmental Assessment of Marine Organic-Rich Sediments Using Molecular Organic Geochemistry. Geological Society, London, Special Publications, 26(1): 79-98. https://doi.org/10.1144/gsl.sp.1987.026.01.05
      Chaboureau, A.C., Guillocheau. F., Robin, Cecile., et al., 2012. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications, Tectonophysics, https://dor.org/10.1016/j.tecto.2012.08.025 doi: 10.1016/j.tecto.2012.08.025
      Connan, J., 1985. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D., eds., Advances in Petroleum Geochemistry, 1: 299-335. Academic Press, London.
      De Grande, S.M.B., Aquino Neto, F.R., Mello, M.R., 1993. Extended Tricyclic Terpanes in Sediments and Petroleums. Organic Geochemsitry, 20(7): 1039-1047. https://dor.org/10.1016/0146-6380(93)90112-O doi: 10.1016/0146-6380(93)90112-O
      Dickson, W., Schiefelbein, C., Zumberge. J., et al., 2005. Basin Analysis in Brazilian and West African Conjugates: Combining Disciplines to Deconstruct Petroleum Systems. Petroleum Systems of Divergent Continental Margin Basins: 25th Annual, Houston, 790-806. https://doi.org/10.5724/gcs.05.25.0790
      Gibbons, M. J., Williams, A. K., Piggott, N., et al., 1983. Petroleum Geochemistry of the Southern Santos Basin, Offshore Brazil. Journal of the Geological Society, 140(3): 423-430. https://doi.org/10.1144/gsjgs.140.3.0423
      Gomes, P., Kilsdonk, B., Grow, T., et al., 2015. Tectonic Evolution of the Outer High of Santos Basin, Southern São Paulo Plateau, Brazil, and Implications for Hydrocarbon Exploration. Tectonics and Sedimentation. Tulsa, Oklahoma: American Association of Petroleum Geologists, 125-142. https://doi.org/10.1306/13351550m1003530
      He, J., He, D.F., Li, S.L., et al., 2011. Formation and Distribution of Giant Oil and Gas Fields in Passive Continental Margin of South Atlantic Ocean: A Case Study of Santos Basin in Brazil. China Petroleum Exploration, (3): 57-67 (in Chinese with English abstract).
      Holba, A.G., Dzou, L.I., Wood, G.D. . et al., 2003. Application of Tetracyclic Polyprenoids as Indicators of Input from Fresh-Brackish Water Environment. Organic Geochmistry, 34(3): 441-469. https://dor.org/10.1016/S0146-6380(02)00193-6 doi: 10.1016/S0146-6380(02)00193-6
      Holba, A.G., Tegelaar, E., Ellis, L., et al., 2000. Tetracyclic Polyprenoids: Indicators of Freshwater(Lacustrine) Algal Input. Geology, 28(3): 251-254. https://dor.org/10.1130/0091-7613(2000)28<251:TPIOFL>2.0.CO;2 doi: 10.1130/0091-7613(2000)28<251:TPIOFL>2.0.CO;2
      Jiang, C.L., Wang, C.X., Cui, H.Y., 2010. Subsalt Hydrocarbon Accumulation Condition and Law in Santos Basin. Journal of Oil and Gas Technology, 32(6): 346-350 (in Chinese with English abstract).
      Kang, H.Q., Cheng, T., Li, M.G., et al., 2016. Characteristcis and Main Control Factors of Hydrocarbon Accumulation in Santos Basin, Brazil. China Offshore Oil and Gas, 28(4): 1-8 (in Chinese with English abstract).
      Lentini, M. R., Fraser. S.I., Sumner, H.S. et al., 2010. Geodynamics of the Central South Atlantic Conjugate Margins: Implications for Hydrocarbon Potential. Petroleum Geoscience, 16 (3): 217-229. https://dor.org/10.1144/1354-079309-909 doi: 10.1144/1354-079309-909
      Liang, Y.B., Zhang, G.Y., Liu, Z.D., et al, 2011. Hydrocarbon Enrichment in the Campos and Santos Basins in Brazil. Marine Geology Frontiers, 27(2): 55-62 (in Chinese with English abstract).
      Liu, S.J., Gao, G., Jin, J., et al., 2022. Source Rock with High Abundance of C28 Regular Sterane in Typical Brackish-Saline Lacustrine Sediments: Biogenic Source, Depositional Environment and Hydrocarbon Generation Potential in Junggar Basin, China. Journal of Petroleum Science and Engineering. https://dor.org/10.1016/j.petrol.2021.109670 doi: 10.1016/j.petrol.2021.109670
      Liu, S.Y., Hu, X.L., Li, J.B., 2011. Great Discovery and Its Significance for Exploration in Subsalt Reservoir in Santos Basin, Brazil. China Petroleum Exploration, 16(4): 74-81. (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2011.04.014
      Liu, S.W., Yang, X.Q., Qiu, N.S., et al., 2017. Geothermal Effets of Salt Structures on Marine Sedimentary Basins and Implications for Hydrocarbon Thermal Evolution. China Science Bulltin, 62: 1631-1644. https://doi.org/10.1360/N972017-00076.
      Ma, A.L., Li, Y.Z., Zhang, X.K., et al., 2015. Carbon Dioxide Origin, Alkane Gas Geochemical Characteristics and Pool Forming Model of Pre-Salt J Oil Field in Offshore Santos Basin, Brazil. China Offshore Oil and Gas, 27(5): 13-20 (in Chinese with English abstract).
      Ma, Z.Z., 2013. Petroleum Geology and Favorable Exploration Potential of Typical South Atlantic Deep Water Basin: Taking Brazil Santos Basin as an Example. Journal of Central South University (Science and Technology), 44(3): 1108-1115. (in Chinese with English abstract).
      Mello, M.R., Telnaes, N., Gaglianone, P.C., et al., 1988. Organic Geochemical Characterisation of Depositional Palaeoenvironments of Source Rocks and Oils in Brazilian Marginal Basins. Proceedings of the 13th International Meeting On Organic Geochemistry, Venice, 31-45. https://dor.org/10.1016/B978-0-08-037236-5.50009-9
      Moldowan, J.M., Seifert, W.K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG, 69: 1225-1268. https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D
      Neto, E., Hayes, J.M. 1999. Use of Hydrogen and Carbon Stable Isotopes Characterizing Oils from the Potiguar Basin (Onshore), Northeastern Brazil. AAPG Bulletin, 83(3): 496-518. https://doi.org/10.1306/00AA9BE2-1730-11D7-8645000102C1865D
      Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive Microbial Biochemistry: From Molecular Fossils to Procaryotic Membranes. Trends in Biochemical Sciences, 7(7): 236-239. https://doi.org/10.1016/0968-0004(82)90028-7
      Peters, K.E., et al., 2004. The Biomarker Guide. Biomarkers and Isotope in the Environment and Human History. Cambridge University Press, Cambridge.
      Schiefelbein, C. F., Zumberge, J. E., Cameron, N. R., et al., 1999. Petroleum Systems in the South Atlantic Margins. Geological Society, London, Special Publications, 153(1): 169-179. https://doi.org/10.1144/gsl.sp.1999.153.01.11
      Schiefelbein, C.F., Zumberge, J.E., Cameron, N.R., et al., 2000. Geochemical Comparison of Crude Oil Along South Atlantic Margins. In: Mello, M.R., Katz, B.J., eds., Petroleum Systems of South Atlantic Margins, American Association of Petroleum Geologists, Tulsa, 15-26. https://dor.org/10.1306/M73705C2
      Scotese, C., Moore. T.L., 2014. Atlas of Phanerozoic Rainfall Maps (Mollweide Projection), Volumes 1-6, PALEOMAP Project PaleoAtlas for ArcGIS, PALEOMAP Project, Evanston, IL.
      Shan, X.L., Li, J.Y., Chen, S.M., et al., 2013. Subaquatic Volcanic Eruptions in Continental Facies and Their Influence on High Quality Source Rocks Shown by the Volcanic Rocks of a Faulted Depression in Northeast China. Science China Earth Sciences. 56(11): 1-7. https://doi.:10.1007/s11430-013-4657-7
      Talbot, M. R., 1988. The Origins of Lacustrine Oil Source Rocks: Evidence from the Lakes of Tropical Africa. Geological Society, London, Special Publications, 40(1): 29-43. https://doi.org/10.1144/gsl.sp.1988.040.01.04
      Tao, C.Z., Deng, C., Bao G, P., et al., 2013. A Comparison Study of Brazilian Campos and Santos Basins: Hydrocarbon Distribution Differences and Control Factors. Journal of JiLin University(Earth and Science Edition), 43(6): 1753-1761(in Chinese with English abstract).
      Volkman, J. K., 1988. Biological Marker Compounds as Indicators of the Depositional Environments of Petroleum Source Rocks. Geological Society, London, Special Publications, 40(1): 103-122. https://doi.org/10.1144/gsl.sp.1988.040.01.10
      Wang, W.G., Yu, L., Nie, M.L., 2012. Comparison of Hydrocarbon Geological Characteristics of Intercoastal Passive Continental Margin Basins, South Atlantic Ocean. Xinjiang Petroleum Geology, 33(2): 250-255(in Chinese with English abstract).
      Wang, X.W., Wu, C.W., Guo, Y.Q., et al., 2013. Accumulation Feature of Lula Oilfield and Its Exploratory Implication for Pre-Salt Reservoirs in Santos Basin, Brazil. China Petroleum Exploration, 18(3): 61-69(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.010
      Wang, K., Hao, J.R., Yang, S.C., et al., 2019. Effect of Salt on Formation Temperature and Thermal Evolution of Source Rock: a Case Study on the Area of X in Gabon Coastal Basin. Geological Science and Technology Information, 38(1): 142-151(in Chinese with English abstract).
      Wu, C. W., 2015. Petroleum Geology Characteristics and Exploration Targets of Pre-Salt Formations in Santos Basin, Brazil. Petroleum Geology & Experiment, 37(1): 9. https://doi.org/10.7603/s40972-015-0009-3
      Xiong, L.P., Wu, C.W., Guo, Y.Q., et al., 2013. Petroleum Accumulation Characteristics in Campos and Santos Basins, Offshore Brazil. Petroleum Geology & Experiment, 35(4): 419-425(in Chinese with English abstract).
      Zhang, J.W., Hu, J.F., Du, X.M., et al., 2015. Hydrocarbon Accumulation Mode and Exploration Direction of Santos Basin in Brazil. Journal of Yangtze University(Natural Science Edition), 12(17): 8-13 (in Chinese with English abstract).
      Zhang, Z.M., Zhu, Y.X., Zhang, D.M., et al., 2020. Hydrocarbon Accumulation Rules and Exploration Inspiration of Pre-Salt Carbonate Reservoirs in the Great Campos Basin, Brazil. China Petroleum Exploration, 25(4): 75-85(in Chinese with English abstract).
      Zhao, H.Y., Yu, S., Hu, X.L., et al., 2013. Analysis on Deep Water Pre-Salt Reservoir Characteristics of the South Atlantic Passive Continental Margin Basin. Reservoir Evaluation and Development, 3(3): 13-18(in Chinese with English abstract).
      Zhao, J., Zhao, J.F., Ren, K.X., et al., 2021. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217-3229(in Chinese with English abstract).
      程涛, 康洪全, 梁建设, 等, 2019. 巴西桑托斯盆地岩浆岩成因类型划分与活动期次分析. 中国海上油气, 31(4): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201904007.htm
      何娟, 何登发, 李顺利, 等, 2011. 南大西洋被动大陆边缘盆地大油气田开成条件与分布规律——以巴西桑托斯盆地为例. 中国石油勘探, 3: 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201103008.htm
      贾怀存, 康洪全, 李明刚, 等, 2020. 桑托斯盆地盐下CO2聚集条件及对油气成藏影响. 西南石油大学学报(自然科学版), 42(4): 66: 72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004007.htm
      蒋春雷, 王春修, 崔旱云, 2010. 桑托斯盆地盐下成藏条件与成藏规律研究. 石油天然气学报(江汉石油学院学报), 32(6): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201006087.htm
      康洪全, 程涛, 李明刚, 等. 2016. 巴西桑托斯盆地油气成藏特征及主控因素分析. 中国海上油气, 28(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201604001.htm
      李明刚, 程涛, 蔡文杰, 等, 2021. 桑托斯盆地盐下裂谷系构造特征及其对油气成藏的控制作用. 中国海上油气, https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202106005.htm
      梁英波, 张光亚, 刘祚冬, 等, 2011. 巴西坎普斯-桑托斯盆地油气差异富集规律. 海洋地质前沿, 27(12): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201112009.htm
      刘深艳, 胡孝林, 李进波, 2011. 巴西桑托斯盆地盐下大发现及其勘探意义. 海外勘探, (4): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201104016.htm
      刘绍文, 杨小秋, 邱楠生, 等, 2017. 沉积盆地盐构造热效应及其油气地质意义. 科学通报, 62: 1631-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715009.htm
      马安来, 黎玉战, 张玺科, 等, 2015. 桑托斯盆地盐下J油气田CO2成因、烷烃气地球化学特征及成藏模式. 中国海上油气, 27(5): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201505002.htm
      马中振, 2013. 典型大西洋型深水盆地油气地质特征及勘探潜力: 以巴西桑托斯盆地为例. 中南大学学报(自然科学版, )44(3): 1108-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303039.htm
      孙旭东, 郑求根, 郭兴伟, 等, 2021. 巴西桑托斯盆地构造演化与油气勘探前景. 海洋地质前沿, 37(2): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202102005.htm
      陶崇智, 邓超, 白国平, 等, 2013. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素. 吉林大学学报(地球科学版), 43(6): 1753-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306005.htm
      王红平, 于兴河, 杨柳, 等, 2020. 巴西桑托斯盆地油气形成的关键条件与勘探方向. 矿产勘查, 11(2): 369-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202002028.htm
      王柯, 郝建荣, 杨树春, 等, 2019. 盐岩对地层温度及烃源岩热演化的影响: 以加蓬盆地X区块为例. 地质科技情报, 38(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901015.htm
      汪伟光, 喻莲, 聂明龙, 2012. 南大西洋两岸被动大陆边缘盆地油气地质特征对比. 新疆石油地质, 33(2): 250-255. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201202038.htm
      汪新伟, 邬长武, 郭永强, 等, 2013. 巴西桑托斯盆地卢拉油田成藏特征及对盐下勘探的启迪. 中国石油勘探, 18(3): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303011.htm
      邬长武, 2015. 巴西桑托斯盆地盐下层序油气地质特征与有利区预测. 石油实验地质, 37(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501010.htm
      熊利平, 邬长武, 郭永强, 等, 2013. 巴西海上坎波斯与桑托斯盆地油气成藏特征与对比研究. 石油实验地质, 35(4): 419-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201304013.htm
      张金伟, 胡俊峰, 杜笑梅, 等, 2015. 巴西桑托斯盆地油气成藏模式及勘探方向. 长江大学学报(自科版), 12(17): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201517002.htm
      张忠民, 朱弈璇, 张德民, 等, 2020. 巴西大坎波斯盆地盐下碳酸盐岩油气成藏规律与勘探启示. 中国石油勘探, 25(4): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202004008.htm
      赵红岩, 于水, 胡孝林, 等, 2013. 南大西洋初动大陆边缘盆地深水盐下油气藏特征分析. 油气藏评价与开发, 3(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201303005.htm
      赵健, 赵俊峰, 任康绪, 等, 2021. 巴西桑托斯盆地CO2区域分布及主控因素. 地球科学, 46(9): 3217-3229. doi: 10.3799/dqkx.2020.359
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (1081) PDF downloads(83) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return