• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Xu Daliang, Peng Lianhong, Deng Xin, Xu Yang, Liu Hao, 2023. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042
    Citation: Xu Daliang, Peng Lianhong, Deng Xin, Xu Yang, Liu Hao, 2023. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042

    Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance

    doi: 10.3799/dqkx.2023.042
    • Received Date: 2022-11-21
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • The Wengmen complex, a newly identified Early Precambrian metamorphic basement with shallow metamorphism, opens a fresh avenue for future research on the formation and evolution of the early continental crust of the Dabie orogen on the northern Yangtze Block. In this paper, it presents a comprehensive study of in situ zircon U-Pb geochronology and Hf isotopes of representative meta-granitic rocks from the Wengmen complex. The results show that two meta-tonalite gneisses were formed at 2 914±24.5 Ma and 2 874±6.6 Ma respectively, two monzonitic granitic gneisses were formed at 2 669±10.7 Ma and 2 644±7.1 Ma respectively, and one mylonitized monzonitic granite was formed at 2 454±6.5 Ma, which confirms the existence of Archean to Early Paleoproterozoic continental crust basement in the southern Dabie orogen. The dating results also show that the formation ages of the two eyeball-like granitic gneisses are 2 011±6.3 Ma and 2 010±5.4 Ma, respectively. Moreover, ca. 2.0 Ga metamorphic zircon age has been obtained from the Wengmen Archean rocks, indicating that the complex may have been involved in the Paleoproterozoic orogenic event. The available data indicate that the newly discovered Wengmen complex in the southern Dabie orogen and the Kongling complex in the Yangtze continental core have synchronous tectono-magmatic thermal events and crustal accretion history during the Archean to Early Paleoproterozoic. However, the periphery of the Dabie orogen shows uniqueness due to its well-developed ~2.5 Ga tectono-magmatic thermal event, which is consistent with those of the ancient continental blocks in the world and may be the record of the final maturation and stabilization during the end of the Archean. Integrating the new and published data, it proposes that each basement on the northern Yangtze Block maybe coexisted in different parts of the Sclavia supercraton at the end of the Neoarchean, and the periphery of the Dabie orogen represented by the Wengmen complex maybe was located closer to the margin of the supercraton.

       

    • loading
    • Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino- Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472-489. https://doi.org/10.1029/95tc02552
      Bureau of Geology and Mineral Resources of Hubei Province, 1990. Regional Geology of Hubei Province. Geological Publishing House, Beijing, 1-705 (in Chinese).
      Chang, Y. F., Dong, S. W., Huang, D. Z., 1996. On Tectonics of "Poly-Basement with One Cover" in Middle-Lower Yangtze Craton, China. Volcanology & Mineral Resources, 17(S1): 1-15 (in Chinese with English abstract).
      Chen, D. G., Deloule, E., Xia, Q. K., et al., 2002. Metamorphic Zircon from Shuanghe Ultra-High Pressure Eclogite, Dabieshan: Ion Microprobe and Internal Micro-Structure Study. Acta Petrologica Sinica, 18(3): 369-377 (in Chinese with English abstract).
      Chen, K., Gao, S., Wu, Y. B., et al., 2013. 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017
      Chen, Q., Sun, M., Zhao, G. C., et al., 2019. Episodic Crustal Growth and Reworking of the Yudongzi Terrane, South China: Constraints from the Archean TTGS and Potassic Granites and Paleoproterozoic Amphibolites. Lithos, 326/327: 1-18. https://doi.org/10.1016/j.lithos.2018.12.005
      Condie, K. C., 2008. Did the Character of Subduction Change at the End of the Archean? Constraints from Convergent-Margin Granitoids. Geology, 36(8): 611. https://doi.org/10.1130/g24793a.1
      Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394-402. https://doi.org/10.1016/j.gr.2011.09.011
      Dabieshan Ultrahigh Pressure Metamorphism and Collision Orogeny Dynamics Writing Group, 2005. Dabieshan Ultrahigh Pressure Metamorphism and Collision Orogeny Dynamics. Science Press, Beijing, 1-209 (in Chinese).
      Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03
      Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007
      Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230. https://doi.org/10.1016/S0012-821X(98)00152-6
      Jiang, L. L., Wu, W. P., Liu, Y. C., et al., 2003. U-Pb Zircon and Ar-Ar Hornblende Ages of the Susong Complex of the Southern Dabie Orogen and Their Geological Implication. Acta Petrologica Sinica, 19(3): 497-505 (in Chinese with English abstract).
      Li, Y., Liu, Y. C., Yang, Y., et al., 2018. Zircon U-Pb Ages and Hf-Isotope Compositions of Granitic Gneisses from the Susong Metamorphic Zone in the Dabie Orogen, China. Journal of Earth Sciences and Environment, 40(1): 61-75 (in Chinese with English abstract).
      Liu, P. L., Jin, Z. M., 2022. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 33(2): 493-506. https://doi.org/10.1007/s12583-020-1363-1
      Liu, Y. B., Mitchell, R. N., Li, Z. X., et al., 2021. Archean Geodynamics: Ephemeral Supercontinents or Long-Lived Supercratons. Geology, 49(7): 794-798. https://doi.org/10.1130/g48575.1
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Okay, A. I., Şengör, A. M. C., Satir, M., 1993. Tectonics of an Ultrahigh-Pressure Metamorphic Terrane: The Dabie Shan/Tongbai Shan Orogen, China. Tectonics, 12(6): 1320-1334. https://doi.org/10.1029/93tc01544
      Qiu, X. F., Tong, X. R., Jiang, T., et al., 2021. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119-130. https://doi.org/10.1016/j.gr.2020.08.014
      Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3/4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008
      Shi, Y. H., Wang, C. S., Kang, T., et al., 2012. Petrological Characteristics and Zircon U-Pb Age for Susong Metamorphic Complex Rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389-3402 (in Chinese with English abstract).
      Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton. Earth Science, 46(5): 1630-1643 (in Chinese with English abstract).
      Wan, Y. S., 2022. How did the Oldest Continental Crust Form? Earth Science, 47(10): 3776-3778 (in Chinese).
      Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China: New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314: 325-352. https://doi.org/10.1016/j.precamres.2018.05.016
      Wang, X., Guo, J. W., Tao, W., et al., 2021. Paleoproterozoic Tectonic Evolution of the Yangtze Craton: Evidence from Magmatism and Sedimentation in the Susong Area, South China. Precambrian Research, 365: 106390. https://doi.org/10.1016/j.precamres.2021.106390
      Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent: Evidence from the Lengshui Complex, South China. Precambrian Research, 263: 157-173. https://doi.org/10.1016/j.precamres.2015.03.014
      Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
      Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015
      Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008
      Xu, D. L., Peng, L. H., Deng, X., et al., 2022. China Geology Survey: 1∶50 000 Geological Map Database of Qichun Area (within H50E011006, H50E011007, H50E012006 and H50E012007), Hubei Province. Geological Science Data Publishing System, Beijing (in Chinese).
      Xu, S. T., Liu, Y. C., Jiang, L. L., et al., 2002. Architecture and Kinematics of the Dabieshan Orogen. University of Science and Technology of China Press, Heifei, 53-68 (in Chinese).
      Yuan, X. Y., Niu, M. L., Cai, Q. R., et al., 2022. The Nature of Paleoproterozoic Basement in the Northern Yangtze and Its Geological Implication. Precambrian Research, 378: 106761. https://doi.org/10.1016/j.precamres.2022.106761
      Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
      Zhang, L., Liu, H. J., Zhang, S. B., et al., 2022. Tectonic Switch of the North Yangtze Craton at ca. 2.0 Ga: Implications for Its Position in Columbia Supercontinent. Precambrian Research, 381: 106842. https://doi.org/10.1016/j.precamres.2022.106842
      Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
      Zhang, S. B., Zheng, Y. F., Wu, P., et al., 2020. The Nature of Subduction System in the Neoarchean: Magmatic Records from the Northern Yangtze Craton, South China. Precambrian Research, 347: 105834. https://doi.org/10.1016/j.precamres.2020.105834
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, T., Zhu, G., Wu, Q., et al., 2021. Evidence for Discrete Archean Microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259. https://doi.org/10.1016/j.precamres.2021.106259
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417. https://doi.org/10.1130/g22282.1
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
      湖北省地质矿产局, 1990. 湖北省区域地质志. 北京: 地质出版社, 1-705.
      常印佛, 董树文, 黄德志, 1996. 论中‒下扬子"一盖多底"格局与演化. 火山地质与矿产, 17(S1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ1996Z1000.htm
      陈道公, Deloule, E., 夏群科, 等, 2002. 大别山双河超高压榴辉岩中变质锆石: 离子探针和微区结构研究. 岩石学报, 18(3): 369-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203011.htm
      大别山超高压变质作用与碰撞造山动力学编写组, 2005. 大别山超高压变质作用与碰撞造山动力学. 北京: 科学出版社, 1-209.
      江来利, 吴维平, 刘贻灿, 等, 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3): 497-505. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303013.htm
      李远, 刘贻灿, 杨阳, 等, 2018. 大别山宿松变质带花岗片麻岩的锆石U-Pb年龄和Hf同位素成分. 地球科学与环境学报, 40(1): 61-75. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201801007.htm
      石永红, 王次松, 康涛, 等, 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389-3402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201210026.htm
      涂城, 张少兵, 苏克, 等, 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630-1643. doi: 10.3799/dqkx.2020.169
      万渝生, 2022. 最古老陆壳是如何形成的?. 地球科学, 47(10): 3776-3778. doi: 10.3799/dqkx.2022.804
      徐大良, 彭练红, 邓新, 等, 2022. 中国地质调查局: 湖北省蕲春地区(H50E011006, H50E011007, H50E012006和H50E012007图幅之内)1∶50 000地质图数据库. 北京: 地质科学数据出版系统.
      徐树桐, 刘贻灿, 江来利, 等, 2002. 大别山造山带的构造几何学和运动学. 合肥: 中国科学技术大学出版社, 53-68.
    • dqkxzx-48-11-4072-附表.xls
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (360) PDF downloads(75) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return