• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Pang Yuanen, Wang Zhicheng, Li Xu, Du Saizhao, 2024. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks. Earth Science, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043
    Citation: Pang Yuanen, Wang Zhicheng, Li Xu, Du Saizhao, 2024. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks. Earth Science, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043

    Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks

    doi: 10.3799/dqkx.2023.043
    • Received Date: 2023-02-10
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • The moisture content of the soil is the main factor affecting the quality of fine-grained soil. Rapid recognition of soil surface moisture content is an urgent need for developing intelligent monitoring and construction technology in agricultural and geotechnical engineering. In order to overcome the limitation that traditional water content measurement or monitoring methods cannot meet the real-time nondestructive monitoring of soil surface moisture content, an intelligent moisture content recognition algorithm based on the image is developed. Firstly, we collected surface photos of 4 different types of soils under different moisture contents in the laboratory and obtained a high-quality sample library of more than 1 400 pictures, which laid a data foundation for machine learning model construction. Then the classical convolutional neural network is used to learn the image dataset of soil moisture content, and the intelligent recognition model of soil moisture content is established. The model comparison results show that the model based on ResNet34 architecture has the best moisture content recognition effect, and the average error of moisture content prediction on the test set is about 2%. This model basically meets the requirement of real-time nondestructive monitoring of soil surface moisture content and can provide an essential means for the development of intelligent monitoring and construction technology in agricultural and geotechnical engineering.

       

    • loading
    • Cai, Y., Zheng, W. G., Zhang, X., et al., 2019. Research on Soil Moisture Prediction Model Based on Deep Learning. PLoS One, 14(4): e0214508. https://doi.org/10.1371/journal.pone.0214508
      Canziani, A., Paszke, A., Culurciello, E., 2016. An Analysis of Deep Neural Network Models for Practical Applications. ArXiv, abs/1605.07678. https://doi.org/10.48550/arXiv.1605.07678
      Chang, D., Li, X., Liu, J. K., et al., 2014. Study Progress and Comparison of Soil Moisture Content Measurement Methods. Geotechnical Investigation & Surveying, 42(9): 17-22, 35 (in Chinese with English abstract).
      Chen, T. Q., Moreau, T., Jiang, Z. H., et al., 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. ArXiv, 1802.04799. http://arxiv.org/abs/1802.04799.pdf
      Cheng, G. J., Li, B., Wan, X. L., et al., 2021. Research on Classification of Rock Section Image Based on Squeezenet Convolutional Neural Network. Mineralogy and Petrology, 41(4): 94-101 (in Chinese with English abstract).
      Dawson, H. L., Dubrule, O., John, C. M., 2023. Impact of Dataset Size and Convolutional Neural Network Architecture on Transfer Learning for Carbonate Rock Classification. Computers & Geosciences, 171: 105284. https://doi.org/10.1016/j.cageo.2022.105284
      Domínguez-Cuesta, M. J., Quintana, L., Valenzuela, P., et al., 2021. Evolution of a Human-Induced Mass Movement under the Influence of Rainfall and Soil Moisture. Landslides, 18(11): 3685-3693. https://doi.org/10.1007/s10346-021-01731-4
      Fan, H. Y., Tian, Z. H., Xu, X. B., et al., 2022. Rockfill Material Segmentation and Gradation Calculation Based on Deep Learning. Case Studies in Construction Materials, 17: e01216. https://doi.org/10.1016/j.cscm.2022.e01216
      Guo, T., Yu, H. B., 2018. Methods of Determination of Soil Water Content. Inner Mongolia Science Technology & Economy, (3): 66-67 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6921.2018.03.035
      He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, 770-778. https://doi.org/10.1109/CVPR.2016.90
      Hou, X. L., Feng, Y. H., Wu, G. H., et al., 2016. Application Research on Artificial Neural Network Dynamic Prediction Model of Soil Moisture. Water Saving Irrigation, (7): 70-72, 76 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-4929.2016.07.017
      Huang, G., Liu, Z., Laurens, V., et al., 2016. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2261-2269. https://doi.org/10.1109/CVPR.2017.243
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Huang, X. H., Li, T. F., Liu, X. X., et al., 2022. Research on Tracking and Prediction of Rock Fissure Sevelopment Based on Improved Faster R-CNN Algorithm. Journal of Henan Polytechnic University (Natural Science), 41(4): 134-141 (in Chinese with English abstract).
      Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. https://doi.org/10.1145/3065386
      Lin, M., Chen, Q., Yan, S. C., 2014. Network in Network. ArXiv Preprint ArXiv, 1312.4400. https://doi.org/10.48550/arXiv.1312.4400
      McBratney, A. B., Minasny, B., Viscarra Rossel, R., 2006. Spectral Soil Analysis and Inference Systems: A Powerful Combination for Solving the Soil Data Crisis. Geoderma, 136(1/2): 272-278. https://doi.org/10.1016/j.geoderma.2006.03.051
      Ni, J. P., Gao, M., Wei, C. F., et al., 2009. Effects of Soil Water Content on Soil Shearing Strength to Different Soil Layer of Shallow Landslide. Journal of Soil and Water Conservation, 23(6): 48-50 (in Chinese with English abstract). doi: 10.3321/j.issn:1009-2242.2009.06.012
      Persson, M., 2005. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone Journal, 4(4): 1119-1122. https://doi.org/10.2136/vzj2005.0023
      Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR), San Diago, 1-14. https://doi.org/10.48550/arXiv.1409.1556
      Song, B. H., Chen, W. W., Wu, W. J., et al., 2017. Experimental Study on the Dynamic Properties of Sliding Zone Soil of a Landslide under Varying Water Content. China Earthquake Engineering Journal, 39(4): 744-749, 758 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2017.04.0744
      Sun, Y. L., Qu, Z. Y., Liu, Q. M., et al., 2020. Dynamic Study of Regional Soil Moisture Content Based on Multi-Source Remote Sensing Co-Inversion. Journal of Southwest University (Natural Science Edition), 42(12): 46-53 (in Chinese with English abstract).
      Szegedy, C., Liu, W., Jia, Y., et al., 2015. Going Deeper with Convolutions. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Chicago, 1-9. https://doi.org/10.48550/arXiv.1409.4842
      Tian, X., Daigle, H., 2018. Machine-Learning-Based Object Detection in Images for Reservoir Characterization: A Case Study of Fracture Detection in Shales. The Leading Edge, 37(6): 435-442. https://doi.org/10.1190/tle37060435.1
      Wang, D. L., Shu, Y. G., 2017. Research Progress in Determination Methods for Soil Water Content. Journal of Mountain Agriculture and Biology, 36(2): 61-65 (in Chinese with English abstract).
      Wang, M., Li, X., Chen, L. H., et al., 2020. A Modified Soil Water Content Measurement Technique Using Actively Heated Fiber Optic Sensor. Journal of Rock Mechanics and Geotechnical Engineering, 12(3): 608-619. https://doi.org/10.1016/j.jrmge.2019.11.003
      Wang, Z. L., Wang, X. Y., Sun, L., 2012. Research of Variation Laws of Shear Strength between Invaded and Natural Collapsible Loess—A Case Study for Collapsible Loess in Gongyi of Henan. South-to-North Water Diversion and Water Science & Technology, 10(3): 123-126 (in Chinese with English abstract).
      Yao, L., Wang, Y. R., Chen, Z., et al., 2020. Time-Varying Characteristics of Spatial Variability of Soil Moisture Content in Farmland. Water Saving Irrigation, (3): 33-39 (in Chinese with English abstract).
      Yi, X. F., Li, H., Zhang, R. C., et al., 2022. Rock Mass Structural Surface Trace Extraction Based on Transfer Learning. Open Geosciences, 14(1): 98-110. https://doi.org/10.1515/geo-2022-0337
      Yu, D. C., Ding, P., Yang, Z. Q., et al., 2021. Study on the Influence of Initial Water Content on the Breakout of Loess Landslide Barrier Dam. Mountain Research, 39(3): 367-377 (in Chinese with English abstract).
      Zanetti, S. S., Cecílio, R. A., Alves, E. G., et al., 2015. Estimation of the Moisture Content of Tropical Soils Using Colour Images and Artificial Neural Networks. CATENA, 135: 100-106. https://doi.org/10.1016/j.catena.2015.07.015
      Zhang, H., Wei, W. L., Liu, S. S., et al., 2023. Intelligent Identification Method of Moisture Content of Loess Based on Transfer Convolutional Neural Networks. Journal of Engineering Geology, 31(1): 21-31 (in Chinese with English abstract).
      Zhao, N. Y., Jiang, Y., Song, Y., 2021. Recognition and Classification of Concrete Cracks under Strong Interference Based on Convolutional Neural Network. Traitement Du Signal, 38(3): 911-917. https://doi.org/10.18280/ts.380338
      Zhao, Y. F., Wang, C. S., 2017. Principles and Comparison of Common Methods for Determining Soil Water Content. Horticulture & Seed, 37(10): 70-73 (in Chinese with English abstract).
      Zheng, Z. W., Gao, Z. Z., 2020. Research on Influence of Soil Moisture Content of Farmland on Infiltration Model Parameters. E3S Web of Conferences, 189(3): 01011. https://doi.org/10.1051/e3sconf/202018901011
      Zhou, C., Hu, G. L., Deng, L. Y., et al., 2021. Variation Characteristics of Soil Organic Matter and Water Content in Different Types of Landscape in the Middle Reaches of Heihe River. Journal of Gansu Agricultural University, 56(4): 126-135 (in Chinese with English abstract).
      Zhou, S. G., 2007. Main Geology Disasters Type of Loess Tunnel. Geology and Prospecting, 43(2): 103-107 (in Chinese with English abstract).
      常丹, 李旭, 刘建坤, 等, 2014. 土体含水率测量方法研究进展及比较. 工程勘察, 42(9): 17-22, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201409004.htm
      程国建, 李碧, 万晓龙, 等, 2021. 基于SqueezeNet卷积神经网络的岩石薄片图像分类研究. 矿物岩石, 41(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202104009.htm
      郭焘, 于红博, 2018. 土壤含水量测定方法综述. 内蒙古科技与经济, (3): 66-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201803035.htm
      侯晓丽, 冯跃华, 吴光辉, 等, 2016. 基于人工神经网络土壤墒情动态预测模型应用研究. 节水灌溉, (7): 70-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201607017.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
      黄晓红, 李铁锋, 刘祥鑫, 等, 2022. 基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测研究. 河南理工大学学报(自然科学版), 41(4): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202401009.htm
      倪九派, 高明, 魏朝富, 等, 2009. 土壤含水率对浅层滑坡体不同层次土壤抗剪强度的影响. 水土保持学报, 23(6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200906014.htm
      宋丙辉, 谌文武, 吴玮江, 等, 2017. 不同含水率下滑坡滑带土动力特性试验研究. 地震工程学报, 39(4): 744-749, 758. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704024.htm
      孙宇乐, 屈忠义, 刘全明, 等, 2020. 基于多源遥感协同反演的区域性土壤含水率动态研究. 西南大学学报(自然科学版), 42(12): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202012005.htm
      王大龙, 舒英格, 2017. 土壤含水量测定方法研究进展. 山地农业生物学报, 36(2): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNS201702013.htm
      王志良, 王秀艳, 孙琳, 2012. 湿陷性黄土侵水前后抗剪强度变化规律研究: 以河南巩义地区湿陷性黄土为例. 南水北调与水利科技, 10(3): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201203028.htm
      姚丽, 王仰仁, 陈钊, 等, 2020. 农田土壤含水率空间变异的时变特性研究. 节水灌溉, (3): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU202003007.htm
      雨德聪, 丁攀, 杨志全, 等, 2021. 初始含水率对黄土滑坡堰塞坝溃决影响研究. 山地学报, 39(3): 367-377. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202103007.htm
      张晗, 魏文龙, 刘森森, 等, 2023. 基于迁移卷积神经网络的黄土含水率智能识别. 工程地质学报, 31(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301003.htm
      赵宇飞, 王长沙, 2017. 常用土壤含水量测定方法的原理及比较. 园艺与种苗, 37(10): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZL201710026.htm
      周川, 胡广录, 邓丽媛, 等, 2021. 黑河中游不同景观类型土壤有机质与含水率变化特征. 甘肃农业大学学报, 56(4): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GSND202104017.htm
      周尚国, 2007. 黄土隧道的主要地质灾害类型. 地质与勘探, 43(2): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702021.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(7)

      Article views (714) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return