Citation: | Pang Yuanen, Wang Zhicheng, Li Xu, Du Saizhao, 2024. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks. Earth Science, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043 |
Cai, Y., Zheng, W. G., Zhang, X., et al., 2019. Research on Soil Moisture Prediction Model Based on Deep Learning. PLoS One, 14(4): e0214508. https://doi.org/10.1371/journal.pone.0214508
|
Canziani, A., Paszke, A., Culurciello, E., 2016. An Analysis of Deep Neural Network Models for Practical Applications. ArXiv, abs/1605.07678. https://doi.org/10.48550/arXiv.1605.07678
|
Chang, D., Li, X., Liu, J. K., et al., 2014. Study Progress and Comparison of Soil Moisture Content Measurement Methods. Geotechnical Investigation & Surveying, 42(9): 17-22, 35 (in Chinese with English abstract).
|
Chen, T. Q., Moreau, T., Jiang, Z. H., et al., 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. ArXiv, 1802.04799.
|
Cheng, G. J., Li, B., Wan, X. L., et al., 2021. Research on Classification of Rock Section Image Based on Squeezenet Convolutional Neural Network. Mineralogy and Petrology, 41(4): 94-101 (in Chinese with English abstract).
|
Dawson, H. L., Dubrule, O., John, C. M., 2023. Impact of Dataset Size and Convolutional Neural Network Architecture on Transfer Learning for Carbonate Rock Classification. Computers & Geosciences, 171: 105284. https://doi.org/10.1016/j.cageo.2022.105284
|
Domínguez-Cuesta, M. J., Quintana, L., Valenzuela, P., et al., 2021. Evolution of a Human-Induced Mass Movement under the Influence of Rainfall and Soil Moisture. Landslides, 18(11): 3685-3693. https://doi.org/10.1007/s10346-021-01731-4
|
Fan, H. Y., Tian, Z. H., Xu, X. B., et al., 2022. Rockfill Material Segmentation and Gradation Calculation Based on Deep Learning. Case Studies in Construction Materials, 17: e01216. https://doi.org/10.1016/j.cscm.2022.e01216
|
Guo, T., Yu, H. B., 2018. Methods of Determination of Soil Water Content. Inner Mongolia Science Technology & Economy, (3): 66-67 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6921.2018.03.035
|
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, 770-778.
|
Hou, X. L., Feng, Y. H., Wu, G. H., et al., 2016. Application Research on Artificial Neural Network Dynamic Prediction Model of Soil Moisture. Water Saving Irrigation, (7): 70-72, 76 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-4929.2016.07.017
|
Huang, G., Liu, Z., Laurens, V., et al., 2016. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2261-2269. https://doi.org/10.1109/CVPR.2017.243
|
Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
|
Huang, X. H., Li, T. F., Liu, X. X., et al., 2022. Research on Tracking and Prediction of Rock Fissure Sevelopment Based on Improved Faster R-CNN Algorithm. Journal of Henan Polytechnic University (Natural Science), 41(4): 134-141 (in Chinese with English abstract).
|
Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. https://doi.org/10.1145/3065386
|
Lin, M., Chen, Q., Yan, S. C., 2014. Network in Network. ArXiv Preprint ArXiv, 1312.4400. https://doi.org/10.48550/arXiv.1312.4400
|
McBratney, A. B., Minasny, B., Viscarra Rossel, R., 2006. Spectral Soil Analysis and Inference Systems: A Powerful Combination for Solving the Soil Data Crisis. Geoderma, 136(1/2): 272-278. https://doi.org/10.1016/j.geoderma.2006.03.051
|
Ni, J. P., Gao, M., Wei, C. F., et al., 2009. Effects of Soil Water Content on Soil Shearing Strength to Different Soil Layer of Shallow Landslide. Journal of Soil and Water Conservation, 23(6): 48-50 (in Chinese with English abstract). doi: 10.3321/j.issn:1009-2242.2009.06.012
|
Persson, M., 2005. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone Journal, 4(4): 1119-1122. https://doi.org/10.2136/vzj2005.0023
|
Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR), San Diago, 1-14.
|
Song, B. H., Chen, W. W., Wu, W. J., et al., 2017. Experimental Study on the Dynamic Properties of Sliding Zone Soil of a Landslide under Varying Water Content. China Earthquake Engineering Journal, 39(4): 744-749, 758 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2017.04.0744
|
Sun, Y. L., Qu, Z. Y., Liu, Q. M., et al., 2020. Dynamic Study of Regional Soil Moisture Content Based on Multi-Source Remote Sensing Co-Inversion. Journal of Southwest University (Natural Science Edition), 42(12): 46-53 (in Chinese with English abstract).
|
Szegedy, C., Liu, W., Jia, Y., et al., 2015. Going Deeper with Convolutions. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Chicago, 1-9. https://doi.org/10.48550/arXiv.1409.4842
|
Tian, X., Daigle, H., 2018. Machine-Learning-Based Object Detection in Images for Reservoir Characterization: A Case Study of Fracture Detection in Shales. The Leading Edge, 37(6): 435-442. https://doi.org/10.1190/tle37060435.1
|
Wang, D. L., Shu, Y. G., 2017. Research Progress in Determination Methods for Soil Water Content. Journal of Mountain Agriculture and Biology, 36(2): 61-65 (in Chinese with English abstract).
|
Wang, M., Li, X., Chen, L. H., et al., 2020. A Modified Soil Water Content Measurement Technique Using Actively Heated Fiber Optic Sensor. Journal of Rock Mechanics and Geotechnical Engineering, 12(3): 608-619. https://doi.org/10.1016/j.jrmge.2019.11.003
|
Wang, Z. L., Wang, X. Y., Sun, L., 2012. Research of Variation Laws of Shear Strength between Invaded and Natural Collapsible Loess—A Case Study for Collapsible Loess in Gongyi of Henan. South-to-North Water Diversion and Water Science & Technology, 10(3): 123-126 (in Chinese with English abstract).
|
Yao, L., Wang, Y. R., Chen, Z., et al., 2020. Time-Varying Characteristics of Spatial Variability of Soil Moisture Content in Farmland. Water Saving Irrigation, (3): 33-39 (in Chinese with English abstract).
|
Yi, X. F., Li, H., Zhang, R. C., et al., 2022. Rock Mass Structural Surface Trace Extraction Based on Transfer Learning. Open Geosciences, 14(1): 98-110. https://doi.org/10.1515/geo-2022-0337
|
Yu, D. C., Ding, P., Yang, Z. Q., et al., 2021. Study on the Influence of Initial Water Content on the Breakout of Loess Landslide Barrier Dam. Mountain Research, 39(3): 367-377 (in Chinese with English abstract).
|
Zanetti, S. S., Cecílio, R. A., Alves, E. G., et al., 2015. Estimation of the Moisture Content of Tropical Soils Using Colour Images and Artificial Neural Networks. CATENA, 135: 100-106. https://doi.org/10.1016/j.catena.2015.07.015
|
Zhang, H., Wei, W. L., Liu, S. S., et al., 2023. Intelligent Identification Method of Moisture Content of Loess Based on Transfer Convolutional Neural Networks. Journal of Engineering Geology, 31(1): 21-31 (in Chinese with English abstract).
|
Zhao, N. Y., Jiang, Y., Song, Y., 2021. Recognition and Classification of Concrete Cracks under Strong Interference Based on Convolutional Neural Network. Traitement Du Signal, 38(3): 911-917. https://doi.org/10.18280/ts.380338
|
Zhao, Y. F., Wang, C. S., 2017. Principles and Comparison of Common Methods for Determining Soil Water Content. Horticulture & Seed, 37(10): 70-73 (in Chinese with English abstract).
|
Zheng, Z. W., Gao, Z. Z., 2020. Research on Influence of Soil Moisture Content of Farmland on Infiltration Model Parameters. E3S Web of Conferences, 189(3): 01011. https://doi.org/10.1051/e3sconf/202018901011
|
Zhou, C., Hu, G. L., Deng, L. Y., et al., 2021. Variation Characteristics of Soil Organic Matter and Water Content in Different Types of Landscape in the Middle Reaches of Heihe River. Journal of Gansu Agricultural University, 56(4): 126-135 (in Chinese with English abstract).
|
Zhou, S. G., 2007. Main Geology Disasters Type of Loess Tunnel. Geology and Prospecting, 43(2): 103-107 (in Chinese with English abstract).
|
常丹, 李旭, 刘建坤, 等, 2014. 土体含水率测量方法研究进展及比较. 工程勘察, 42(9): 17-22, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201409004.htm
|
程国建, 李碧, 万晓龙, 等, 2021. 基于SqueezeNet卷积神经网络的岩石薄片图像分类研究. 矿物岩石, 41(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202104009.htm
|
郭焘, 于红博, 2018. 土壤含水量测定方法综述. 内蒙古科技与经济, (3): 66-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201803035.htm
|
侯晓丽, 冯跃华, 吴光辉, 等, 2016. 基于人工神经网络土壤墒情动态预测模型应用研究. 节水灌溉, (7): 70-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201607017.htm
|
黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
|
黄晓红, 李铁锋, 刘祥鑫, 等, 2022. 基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测研究. 河南理工大学学报(自然科学版), 41(4): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202401009.htm
|
倪九派, 高明, 魏朝富, 等, 2009. 土壤含水率对浅层滑坡体不同层次土壤抗剪强度的影响. 水土保持学报, 23(6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200906014.htm
|
宋丙辉, 谌文武, 吴玮江, 等, 2017. 不同含水率下滑坡滑带土动力特性试验研究. 地震工程学报, 39(4): 744-749, 758. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704024.htm
|
孙宇乐, 屈忠义, 刘全明, 等, 2020. 基于多源遥感协同反演的区域性土壤含水率动态研究. 西南大学学报(自然科学版), 42(12): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202012005.htm
|
王大龙, 舒英格, 2017. 土壤含水量测定方法研究进展. 山地农业生物学报, 36(2): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNS201702013.htm
|
王志良, 王秀艳, 孙琳, 2012. 湿陷性黄土侵水前后抗剪强度变化规律研究: 以河南巩义地区湿陷性黄土为例. 南水北调与水利科技, 10(3): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201203028.htm
|
姚丽, 王仰仁, 陈钊, 等, 2020. 农田土壤含水率空间变异的时变特性研究. 节水灌溉, (3): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU202003007.htm
|
雨德聪, 丁攀, 杨志全, 等, 2021. 初始含水率对黄土滑坡堰塞坝溃决影响研究. 山地学报, 39(3): 367-377. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202103007.htm
|
张晗, 魏文龙, 刘森森, 等, 2023. 基于迁移卷积神经网络的黄土含水率智能识别. 工程地质学报, 31(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301003.htm
|
赵宇飞, 王长沙, 2017. 常用土壤含水量测定方法的原理及比较. 园艺与种苗, 37(10): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZL201710026.htm
|
周川, 胡广录, 邓丽媛, 等, 2021. 黑河中游不同景观类型土壤有机质与含水率变化特征. 甘肃农业大学学报, 56(4): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GSND202104017.htm
|
周尚国, 2007. 黄土隧道的主要地质灾害类型. 地质与勘探, 43(2): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702021.htm
|