Citation: | Luo Huiyuan, Xu Qiang, Jiang Yanan, Meng Ran, Pu Chuanhao, 2024. The Prediction Method of Large-Scale Land Subsidence Based on Multi-Temporal InSAR and Machine Learning. Earth Science, 49(5): 1736-1745. doi: 10.3799/dqkx.2023.048 |
Chen, Y., He, Y., Zhang, L. F., et al., 2021. Prediction of InSAR Deformation Time-Series Using a Long Short-Term Memory Neural Network. International Journal of Remote Sensing, 42(18): 6919-6942. https://doi.org/10.1080/01431161.2021.1947540
|
Ding, Q., Shao, Z. F., Huang, X., et al., 2021. Monitoring, Analyzing and Predicting Urban Surface Subsidence: A Case Study of Wuhan City, China. International Journal of Applied Earth Observation and Geoinformation, 102: 102422. https://doi.org/10.1016/j.jag.2021.102422
|
Fan, Z. L., Zhang, Y. H., 2019. Research Progress on Intelligent Algorithms Based Ground Subsidence Prediction. Geomatics & Spatial Information Technology, 42(5): 183-188 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-5867.2019.05.054
|
Gao, H., Song, Q. C., Huang, J., 2016. Subgrade Settlement Prediction Based on Least Square Support Vector Regession and Real-Coded Quantum Evolutionary Algorithm. International Journal of Grid and Distributed Computing, 9(7): 83-90. https://doi.org/10.14257/ijgdc.2016.9.7.09
|
Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10): 2451-2471. https://doi.org/10.1162/089976600300015015
|
Hill, P., Biggs, J., Ponce-López, V., et al., 2021. Time Series Prediction Approaches to Forecasting Deformation in Sentinel 1 InSAR Data. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB020176. https://doi.org/10.1029/2020JB020176
|
Jin, B. J., Yin, K. L., Gui, L., et al., 2022. Evaluation of Ground Subsidence Susceptibility of Transmission Line Towers in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, 1-13 (in Chinese with English abstract).
|
Li, H. J., Zhu, L., Dai, Z. X., et al., 2021. Spatiotemporal Modeling of Land Subsidence Using a Geographically Weighted Deep Learning Method Based on PS-InSAR. Science of the Total Environment, 799: 149244. https://doi.org/10.1016/j.scitotenv.2021.149244
|
Li, L., 2014. Study on Forecasting Model of Land Subsidence and Its Application (Dissertation). Chang'an University, Chang'an (in Chinese with English abstract).
|
Li, X., Li, L. C., Song, Y. X., et al., 2019. Characterization of the Mechanisms Underlying Loess Collapsibility for Land-Creation Project in Shaanxi Province, China—A Study from a Micro Perspective. Engineering Geology, 249: 77-88. https://doi.org/10.1016/j.enggeo.2018.12.024
|
Liu, Q. H., Zhang, Y. H., Deng, M., et al., 2021. Time Series Prediction Method of Large-Scale Surface Subsidence Based on Deep Learning. Acta Geodaetica et Cartographica Sinica, 50(3): 396-404 (in Chinese with English abstract).
|
Lorenz, E. N., 1956. Empirical Orthogonal Functions and Statistical Weather Prediction. Massachusetts Institute of Technology Department of Meteorology, Cambridge, 31-69.
|
Luo, Z. J., Wang, X., Dai, J., et al., 2022. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1) : 238-252 (in Chinese with English abstract).
|
Nikolopoulos, K., Goodwin, P., Patelis, A., et al., 2007. Forecasting with Cue Information: A Comparison of Multiple Regression with Alternative Forecasting Approaches. European Journal of Operational Research, 180(1): 354-368. https://doi.org/10.1016/j.ejor.2006.03.047
|
Phi, T. H., Strokova, L. A., 2015. Prediction Maps of Land Subsidence Caused by Groundwater Exploitation in Hanoi, Vietnam. Resource-Efficient Technologies, 1(2): 80-89. https://doi.org/10.1016/j.reffit.2015.09.001
|
Pu, C. H., Xu, Q., Zhao, K. Y., et al., 2021. Land Uplift Monitoring and Analysis in Yan'an New District Based on SBAS-InSAR Technology. Geomatics and Information Science of Wuhan University, 46(7): 983-993 (in Chinese with English abstract).
|
Shahin, M. A., Maier, H. R., Jaksa, M. B., 2003. Settlement Prediction of Shallow Foundations on Granular Soils Using B-Spline Neurofuzzy Models. Computers and Geotechnics, 30(8): 637-647. https://doi.org/10.1016/j.compgeo.2003.09.004
|
Shao, Q., Li, W., Han, G. J., et al., 2021. A Deep Learning Model for Forecasting Sea Surface Height Anomalies and Temperatures in the South China Sea. Journal of Geophysical Research: Oceans, 126(7): e2021JC017515. https://doi.org/10.1029/2021JC017515
|
Shearer, T. R., 1998. A Numerical Model to Calculate Land Subsidence, Applied at Hangu in China. Engineering Geology, 49(2): 85-93. https://doi.org/10.1016/S0013-7952(97)00074-4
|
Shi, L. Y., Gong, H. L., Chen, B. B., et al., 2020. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sensing, 12(24): 4044. https://doi.org/10.3390/rs12244044
|
Shi, X. Q., Wu, J. C., Ye, S. J., et al., 2008. Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China. Engineering Geology, 100(1/2): 27-42. https://doi.org/10.1016/j.enggeo.2008.02.011
|
Shin, Y., Ghosh, J., 1995. Ridge Polynomial Networks. IEEE Transactions on Neural Networks, 6(3): 610-622. https://doi.org/10.1109/72.377967
|
Su, H. Y., Hu, Z. Z., 1980. Review of Land Subsidence Research abroad. Geology of Shanghai, 1(2): 65-77 (in Chinese with English abstract).
|
Waheeb, W., Ghazali, R., 2020. A Novel Error-Output Recurrent Neural Network Model for Time Series Forecasting. Neural Computing and Applications, 32(13): 9621-9647. https://doi.org/10.1007/s00521-019-04474-5
|
Waheeb, W., Ghazali, R., Herawan, T., 2016. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting. PLoS One, 11(12): e0167248. https://doi.org/10.1371/journal.pone.0167248
|
Waheeb, W., Ghazali, R., Hussain, A. J., 2018. Dynamic Ridge Polynomial Neural Network with Lyapunov Function for Time Series Forecasting. Applied Intelligence, 48(7): 1721-1738. https://doi.org/10.1007/s10489-017-1036-7
|
Wang, Y., Yang, G., 2014. Prediction of Composite Foundation Settlement Based on Multi-Variable Gray Model. Applied Mechanics and Materials, 580/581/582/583: 669-673. https://doi.org/10.4028/www.scientific.net/amm.580-583.669
|
Williams, R. J., Zipser, D., 1989. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation, 1(2): 270-280. https://doi.org/10.1162/neco.1989.1.2.270
|
Yin, Y. P., Zhang, Z. C., Zhang, K. J., 2005. Land Subsidence and Countermeasures for Its Prevention in China. The Chinese Journal of Geological Hazard and Control, 16(2): 1-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2005.02.001
|
Zhang, H. X., 2021. Research on Monitoring and Prediction of Subsidence in Yan'an New Area Based on InSAR and Machine Learning (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
|
Zhang, Y. L., Zhang, Y. H., 2013. Land Subsidence Prediction Method of Power Cables Pipe Jacking Based on the Peck Theory. Advanced Materials Research, 634/635/636/637/638: 3721-3724. https://doi.org/10.4028/www.scientific.net/amr.634-638.3721
|
Zhou, C. D., Lan, H. X., Bürgmann, R., et al., 2022. Application of an Improved Multi-Temporal InSAR Method and Forward Geophysical Model to Document Subsidence and Rebound of the Chinese Loess Plateau Following Land Reclamation in the Yan'an New District. Remote Sensing of Environment, 279: 113102. https://doi.org/10.1016/j.rse.2022.113102
|
范泽琳, 张永红, 2019. 智能算法在地面沉降预测中的应用综述. 测绘与空间地理信息, 42(5): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201905055.htm
|
金必晶, 殷坤龙, 桂蕾, 等, 2022. 基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价. 地球科学, 1-13. doi: 10.3799/dqkx.2022.109
|
李丽, 2014. 地面沉降预测模型及其应用研究(硕士学位论文). 西安: 长安大学.
|
刘青豪, 张永红, 邓敏, 等, 2021. 大范围地表沉降时序深度学习预测法. 测绘学报, 50(3): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202103012.htm
|
骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源影响研究. 地球科学, 49(1) : 238-252. doi: 10.3799/dqkx.2022.143
|
蒲川豪, 许强, 赵宽耀, 等, 2021. 利用小基线集InSAR技术的延安新区地面抬升监测与分析. 武汉大学学报(信息科学版), 46(7): 983-993. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202107003.htm
|
苏河源, 胡兆璋, 1980. 国外地面沉降研究状况述评. 上海地质, 1(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198002008.htm
|
殷跃平, 张作辰, 张开军, 2005. 我国地面沉降现状及防治对策研究. 中国地质灾害与防治学报, 16(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200502001.htm
|
张宏雪, 2021. 基于InSAR与机器学习的延安新区沉降监测与预测研究(硕士学位论文). 兰州: 兰州大学.
|