• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Yang Liang, Wang Yang, Zhang Quan, Gao feng, Xiao Lan, 2024. A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading. Earth Science, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054
    Citation: Yang Liang, Wang Yang, Zhang Quan, Gao feng, Xiao Lan, 2024. A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading. Earth Science, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054

    A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading

    doi: 10.3799/dqkx.2023.054
    • Received Date: 2023-01-09
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Bedding rock landslide exists widely in slope engineering. Its movement distance is an important parameter to characterize the landslide form and a significant index for risk evaluation. Based on the analysis of the evolution process, the runout distance of the bedding rock landslide is obtained by the theoretical derivation, and the achievements are applied to the Xinjianan landslide. The results showed three parts consisting of movement distance. The horizontal distance of the block in the air is the first, and the mobile distance of the collision with the ground is the next while the sliding distance on the ground is the last. Besides, the relative error between theoretical calculation and the actual measurements selected for the three profiles of the landslide are 9.99%, 2.53%, and 0.58% respectively. The error is small and shows the good application of the model. The research has a reference value for predicting and preventing this type of landslide.

       

    • loading
    • Cheng, Y. G., Wang, Y. F., 2013. Numerical Simulation Analysis on Relaxation and Stability of the Cutting Bedding Slope. Chinese Journal of Underground Space and Engineering, 4: 848-853(in Chinese with English abstract).
      Dai, X. R., Zhao, J. J., Lai, Q. Y., et al., 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944(in Chinese with English abstract).
      Feng, J., Zhou, D. P., Jiang. N., et al., 2007. On the Extent of Bedding Slipping Rock Mass of Consequent Rock Slope. Journal of Mountain Science, 3: 376-380(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2007.03.018
      Fan, X. M., An, J. R., Rossiter, D. G., et al., 2014. Empirical Prediction of Coseismic Landslide Dam Formation. Earth Surface Processes and Landforms, 39(14): 1913-1926. https://doi.org/10.1002/esp.3585
      Guo, D. P., Hamada, M., He, C., et al., 2014. An Empirical Model for Landslide Travel Distance Prediction in Wenchuan Earthquake Area. Landslides, 11(2): 281-291. https://doi.org/10.1007/s10346-013-0444-y
      Ge, Y, F., Tang H, M., Li, Wei., et al, 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592 (in Chinese with English abstract).
      Huang, R. Q., Liu, W. H., 2008. Study on the Movement Characteristics of Rolling Rock Blocks on Platform. Advances in Earth Science, (5): 517-523 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2008.05.012
      He, S. M., Liu, W., Wang, J., 2015. Dynamic Simulation of Landslide Based on Thermo-Poro-Elastic Approach. Computers & Geosciences, 75(10): 24-32. https://doi.org/10.1016/j.cageo.2014.10.013
      Huang, Y., Li, G. Y., Xiong, M., 2020. Stochastic Assessment of Slope Failure Run-Out Triggered by Earthquake Ground Motion. Natural Hazards, 101(1): 87-102. https://doi.org/10.1007/s11069-020-03863-7
      Jiang, P., Chen, J. J., 2016. Displacement Prediction of Landslide Based on Generalized Regression Neural Networks with K-Fold Cross-Validation. Neurocomputing, 198(4): 40-47. https://doi.org/10.1016/j.neucom.2015.08.118
      Liu, Y., Xu, C., Huang, B., et al., 2020. Landslide Displacement Prediction Based on Multi-Source Data Fusion and Sensitivity States. Engineering Geology, 271(1-2): 105608. https://doi.org/10.1016/j.enggeo.2020.105608
      Li, X. P., Tang, X., Zhao, S. X., et al., 2021. MPM Evaluation of the Dynamic Runout Process of the Giant Daguangbao Landslide. Landslides, 18(4): 1509-1518. https://doi.org/10.1007/s10346-020-01569-2
      Li, D. J., Jia, W. T., Cheng, X., et al., 2022. Stability of Stepped Sliding of Bedding Rock Slope with Discontinuous Joints. Chinese Journal of Geotechnical Engineering, 1-10 (in Chinese with English abstract).
      Liu, L. L., Zhang, P., Zhang, S. H., et al., 2022. Efficient Evaluation of Run-Out Distance of Slope Failure under Excavation. Engineering Geology, 306(12): 106751. https://doi.org/10.1016/j.enggeo.2022.106751
      Mu, C. L., 2017. Study on Deformation Instability Evolution Mechanism and Prediction During Excavating Process of Bedded Rock Slope: A Case of Slope as the Studied Object in the Gasoline Construction Site(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Mitchell, A., McDougall, S., Nolde, N., et al., 2020. Rock Avalanche Runout Prediction Using Stochastic Analysis of a Regional Dataset. Landslides, 17(4): 777-792. https://doi.org/10.1007/s10346-019-01331-3
      Sun, Y., Yang, J., Song, E., 2015. Runout Analysis of Landslides Using Material Point Method. IOP Conference Series: Earth and Environmental Science, 26: 012014. https://doi.org/10.1088/1755-1315/26/1/012014
      Scaringi, G., Fan, X. M., Xu, Q., et al., 2018. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: The Case of the Recent Xinmo Landslide (Sichuan, China). Landslides, 15(7): 1359-1375. https://doi.org/10.1007/s10346-018-0953-9
      Su, X., Wei, W. H., Ye, W. L., et al., 2019. Predicting Landslide Sliding Distance Based on Energy Dissipation and Mass Point Kinematics. Natural Hazards, 96(3): 1367-1385. https://doi.org/10.1007/s11069-019-03618-z
      Shi, J. J., Zhang, W., Wang, B., et al., 2020. Simulation of a Submarine Landslide Using the Coupled Material Point Method. Mathematical Problems in Engineering, 2020(c1): 1-14. https://doi.org/10.1155/2020/4392581
      Takahashi, T., 1981. Estimation of Potential Debris Flows and Their Hazardous Zones: Soft Countermeasures for a Disaster. Natural Disaster Science, 3(1): 57-89.
      Tang, G. C., Tang, Q. Y., Hou, J. W., 2013. Research on Instability Mechanism and Reinforcement Measures of a Low-Angle Rock Bedding Landslide. China Survey and Design, 6: 90-94(in Chinese with English abstract).
      Tang, R., Xu, Q., Wu, B., et al. 2017. Method of Sliding Distance Calculation for Translational Landslides. Rock and Soil Mechanics, 39(3): 1009-1019+1070(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202407017.htm
      Tang, C. H., Yu, X. L., Cai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract).
      Wang, Z. D., Xia, Y. Y., Xia, G. B., et al., 2015. Upper Bound Limit Analysis Method for Stability Analysis of Bedding Rock Slopes. Rock and Soil Mechanics, 2: 576-583(in Chinese with English abstract). .
      Wang J Y, Li L, Zheng D G, et al. 2018. Characteristics of Apparent Dip Slide and Movement Process of the "8.12" Shanyang Rockslide. Journa lof Catastrophology, 33(1): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ202311084.htm
      Yu, X., Gong, B., Tang, C., 2021. Study of the Slope Deformation Characteristics and Landslide Mechanisms under Alternating Excavation and Rainfall Disturbance. Bulletin of Engineering Geology and the Environment, 80(9): 7171-7191. https://doi.org/10.1007/s10064-021-02371-7
      Zhang, Y. H., Zhang, M. X., Cheng, Q., 2017. Kinematics Analysis for Calculating Distance ofRockfalls on Typical Loose Media Slope. Journal of Shanghai University(Natural Science), 23(6): 949-960(in Chinese with English abstract).
      Zhang, J. C., Wang, Z. F., Wei, Z. F., et al., 2019. Analysis of Apparent Tendency Instability Mechanism of Bedding: A Case Study of Yishizha Landslide in Guide Rock Slope. Journal of Qinghai University, 5: 52-57(in Chinese with English abstract).
      Zhang, Z. L., Zeng, R. Q., Meng, X. M., et al., 2021. Estimating Landslide Sliding Distance Based on an Improved Heim Sled Model. CATENA, 204(2): 105401. https://doi.org/10.1016/j.catena.2021.105401
      Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2022. Centrifuge Modeling of Multi-Row Stabilizing Piles Reinforced Reservoir Landslide with Different Row Spacings. Landslides, 20(3): 559-577. https://doi.org/10.1007/s10346-022-01994-5
      Zhou, C., Cao, Y., Yin, K. L., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301(4): 106590. https://doi.org/10.1016/j.enggeo.2022.106590
      成永刚, 王玉峰, 2013. 顺层挖方边坡松弛区及稳定性数值模拟分析. 地下空间与工程学报, 4: 848-853. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201304024.htm
      代欣然, 赵建军, 赖琪毅, 等, 2022. 青藏高原察达高速远程滑坡运动过程与形成机理. 地球科学, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205
      冯君, 周德培, 江南, 等, 2007. 顺层岩质边坡顺层滑动岩体范围分析. 山地学报, 3: 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200703017.htm
      葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117
      黄润秋, 刘卫华, 2008. 滚石在平台上的运动特征分析. 地球科学进展, (5): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805014.htm
      李德建, 贾文韬, 程肖, 等, 2022. 阶梯状滑动断续节理顺层边坡稳定性分析. 岩土工程学报, 1-10. http://kns.cnki.net/kcms/detail/32.1124.TU.2022-0620.1303.002.html
      穆成林, 2017. 顺层岩质高边坡开挖过程变形失稳演化机制及预测评价研究(博士毕业论文). 成都: 成都理工大学.
      唐耿琛, 唐秋元, 侯俊伟, 2013. 缓倾角顺层滑坡失稳机制及加固措施研究. 中国勘察设计, 6: 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KCSJ201306030.htm
      唐然, 许强, 吴斌, 等, 2018. 平推式滑坡运动距离计算模型. 岩土力学39(3): 1009-1019+1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803030.htm
      唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960
      王智德, 夏元友, 夏国邦, 等, 2015. 顺层岩质滑坡稳定性极限分析上限法. 岩土力学, 02: 576-583.
      王佳运, 李林, 郑定国, 等, 2018. "8. 12" 山阳滑坡视向滑动特征与运动过程. 灾害学, 33 (1): 111-116.
      张亚辉, 张孟喜, 陈强, 等, 2017. 典型松散体边坡滚石运动距离的运动学分析. 上海大学学报(自然科学版), 23(6): 949-960. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201706016.htm
      张俊才, 王仲复, 魏正发, 等, 2019. 层岩质斜坡视倾向失稳机制分析——以贵德亦什扎滑坡为例. 青海大学学报, 5: 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201905009.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (374) PDF downloads(46) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return