• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Dong Jiaxing, Gong Xinyue, Mi Jian, Fan Kaiyuan, Yang Runxue, Zhao Yongchuan, Mu Hongyuan, Zhou Lunshun, 2024. Structure and Application of SHF Classification Method for Surrounding Rock of Sandy Dolomite Tunnel. Earth Science, 49(8): 2813-2825. doi: 10.3799/dqkx.2023.059
    Citation: Dong Jiaxing, Gong Xinyue, Mi Jian, Fan Kaiyuan, Yang Runxue, Zhao Yongchuan, Mu Hongyuan, Zhou Lunshun, 2024. Structure and Application of SHF Classification Method for Surrounding Rock of Sandy Dolomite Tunnel. Earth Science, 49(8): 2813-2825. doi: 10.3799/dqkx.2023.059

    Structure and Application of SHF Classification Method for Surrounding Rock of Sandy Dolomite Tunnel

    doi: 10.3799/dqkx.2023.059
    • Received Date: 2023-03-21
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • Sandy dolomite is widely distributed in the southwest of China. When tunnels are built in this stratum, geological disasters such as face collapse, water inrush and sand gushing often occur. Therefore, the problem of sandy dolomite faced in the construction of water diversion project in central Yunnan has attracted much attention. The sanding grade and groundwater conditions are the key factors to control the failure mode and stability of the surrounding rock of the sanded dolomite tunnel. However, these factors are often not fully considered in the traditional surrounding rock classification methods, such as the rock strength is not considered in the Q system, the ground stress is not considered in the RMR method, and the joint state and roughness of the sandy dolomite are not considered in the BQ method. Totally, these classification methods do not take into account the influence of sanding grade. In order to make the surrounding rock classification results of the sandy dolomite tunnel more accurate and faster, it is necessary to build a classification method suitable for the sandy dolomite tunnel. Based on the water diversion project in central Yunnan under construction, we analyze the applicability of traditional methods such as Q method, RMR method, RMi method, GSI method and BQ method in sandy dolomite tunnel. Secondly, combined with the engineering characteristics of sandy dolomite and the external environmental factors, the surrounding rock classification system SHF with the evaluation indexes of sanding grade, structural plane state, groundwater, main structural plane state and ground stress is constructed, and the SHF classification method is verified and applied by selected typical tunnel sections of the project. The established classification method SHF for surrounding rock of sandy dolomite tunnel is prone to operate and highly consistent with the actual situation of the project. The research can provide a theoretical basis for the design and construction of sanded dolomite tunnel support.

       

    • loading
    • Barton, N., Lien, R., Lunde, J., 1974. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics Felsmechanik Mécanique des Roches, 6(4): 189-236. https://doi.org/10.1007/bf01239496
      Bieniawski, Z. T., 1974. Engineering Classification of Jointed Rock Masses. Discussions of Paper by Z. T. Bieniawski, Trans. S. Afr. Instn. Civ. Engrs. V15, N12, Dec. 1973, and Authors Reply. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(12): 244. https://doi.org/10.1016/0148-9062(74)92075-0
      Cai, M., 2011. Rock Mass Characterization and Rock Property Variability Considerations for Tunnel and Cavern Design. Rock Mechanics and Rock Engineering, 44(4): 379-399. https://doi.org/10.1007/s00603-011-0138-5
      Cai, M., Kaiser, P. K., Tasaka, Y., et al., 2007. Determination of Residual Strength Parameters of Jointed Rock Masses Using the GSI System. International Journal of Rock Mechanics and Mining Sciences, 44(2): 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005
      Jiang, Y. F., Zhou, P., Zhou, F. C., et al., 2022. Failure Analysis and Control Measures for Tunnel Faces in Water-Rich Sandy Dolomite Formations. Engineering Failure Analysis, 138(6): 106350. https://doi.org/10.1016/j.engfailanal.2022.106350
      Li, J. G., Mu, H. Y., Mi, J., 2018. Preliminary Study on Engineering Geological Characteristics of Sandy Dolomite. Proceedings of the 2nd National Rock Tunnel Boring Machine Engineering Technology Seminar. China Water & Power Press, Beijing, 52-58(in Chinese).
      Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016. GB 50287-2016 Code for Hydropower Engineering Geological Investigation. Beijing. (in Chinese)
      Palmstrom, A., 1995. RMI: a Rock Mass Characterization System for Rock Engineering Purposes(Dissertation). University of Oslo, Denmark.
      Palmstrom, A., 2000. Recent Developments in Rock Supportestimates by the RMi. Rock Mech Tunnel Technoligy, 6: 1-9
      Shen, Y. J., 2012. Research on Surrounding Rockmass Classification System and Mechanical Parameters of Large-Scale Underground Caverns during Construction Period(Dissertation), China University of Geoscienes, Wuhan(in Chinese with English abstract)
      Shen, Y. J., Xu, G. L., Song, S. W., et al., 2014. A Classification Method of Surrounding Rock Mass in Hydropower Project in High Geostress Area. Chinese Journal of Rock Mechanics and Engineering, (11): 2267-2275(in Chinese with English abstract).
      Shen, Y. J., Xu, G. l., Yang, G. S., et al., 2014. Probability Distribution Characteristics of Rock Mass Classification and its Mechanical Parameters Based on Fine Description. Rock and Soil Mechanics, (2): 565-572(in Chinese with English abstract).
      Shen, Y. J., Xu, G. L., Zhu, K. J., 2011. Optimization of RMi Rockmass Quality Evaluation Method and its Application. Journal of Central South University(Science and Technology), (5): 1375-1383(in Chinese).
      Si, F. A., Li, K., Duan, S. W., 2020. Comprehensive Classification of Surrounding Rock of Deep Buried Long Hydraulic Tunnel Constructed with Tunnel Boring Machine. Journal of Yangtze River Scientific Research Institute, (8): 150-154(in Chinese with English abstract)
      State General Administration of Market Supervision and Administration, 2014. GB/T 50218-2014 Standard for Classification of Engineering Rock Mass. Beijing(in Chinese).
      Tian, Q. W., Yue, C. L., 2014. Characteristics of Karst Sanded Fine-Crystalline Dolomite and Wall Rock Classification for Pingtou Hydropower Stati. Advances in Science and Technology of Water Resources, (5): 45-49(in Chinese with English abstract)
      Wang, P. P., Yao, J., Jiang, L., 2019. Sandification Characteristics of Guizhou Dolomite and the Influence on Tunnel Support Structure. Journal of Guizhou University(Natural Sciences), 36(3): 44-48. (in Chinese with English abstract)
      Wang, Z. J., Du, Y. W., Jiang, Y. F., et al., 2021. Study on the Mechanism of Instability of Tunnel Face in Sandy Dolomite Stratum. Chinese Journal of Rock Mechanics and Engineering, 40 (202): 3118-3126(in Chinese with English abstract)
      Xiong, Q. R., Xiao, M., Hu, T. Q., 2013. Numerical Analysis of Sandificated Rock Masses Under the Disturbance of Excavation Based on Elastoplastic Damage Model. Journal of Sichuan University (Natural Science Edition), (1): 90-96(in Chinese)
      Zhang, Z. Q., Fan, J. Q., Zeng, P., 2023. Research on Probability Classification Prediction and Application of Large Deformation Disaster in Tunnel Survey and Design Period Based on Bayesian Network. Earth Science, 48(5): 1923-1934 (in Chinese with English abstract).
      Zhang, H. Q., Zhao, Q. H., Peng, S. Q., 2012. Rock Mass Quality Classification and Deep Karst Sandification of Dolomite about Pingtou Hydroelectric Station at the Meigu River. China Rural Water and Hydropower, (7): 151-155(in Chinese)
      Zhang, L. X., Zhang, H. Q., Zhao, Q. H., et al., 2012. Characteristics and Distribution of Dolomite Sandification at Pingtou Hydropower Station. Yangtze River, (19): 42-44, 78(in Chinese)
      Zhao, Y., 2019. The Most Representative National Key Water Conservancy Project under Construction: Central Yunnan Water Diversion Project. Tunnel Construction, 39(3): 511-522(in Chinese).
      Zhao, Y. R., 2021. Study on Physical and Mechanical Properties of Strong to Severe Sandification Dolomite in Central Yunnan Water Diversion Project(Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract).
      Zhou, P., Jiang, Y. F., Zhou, F. C., et al., 2022. Disaster Mechanism of Tunnel Face with Large Section in Sandy Dolomite Stratum. Engineering Failure Analysis, 131(3): 105905. https://doi.org/10.1016/j.engfailanal.2021.105905
      Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rock Burst Risk Assessment of Deep-Buried Tunnel Based on Combination Weighting and Unascertained Measure: Taking Sangzhuling Tunnel as an Example. Earth Science, 47(6): 2130-2148(in Chinese with English abstract).
      国家市场监督管理总局, 2014. GB/T 50218-2014工程岩体分级标准. 北京.
      李建国, 沐红元, 米健, 2018. 砂化白云岩工程地质特性初步研究. 见: 刘志明, 温续余, 尹讯飞等编. 第2届全国岩石隧道掘进机工程技术研讨会论文集. 北京: 中国水利水电出版社, 52-58.
      申艳军, 2012. 大型地下洞室施工期围岩分类体系及力学参数动态分析(博士毕业论文). 武汉: 中国地质大学
      申艳军, 徐光黎, 宋胜武, 等, 2014. 高地应力区水电工程围岩分类法系统研究. 岩石力学与工程学报, (11): 2267-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411011.htm
      申艳军, 徐光黎, 朱可俊, 2011. RMI岩体指标评价法优化及其应用. 中南大学学报(自然科学版), 42(5): 1375-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105034.htm
      司富安, 李坤, 段世委, 2020. TBM施工深埋水工长隧洞围岩综合分类研究. 长江科学院院报, 37(8): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202008027.htm
      田启文, 岳朝林, 2014. 坪头水电站岩溶砂化细晶白云岩的特性及围岩分类. 水利水电科技进展, 34(5): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201405010.htm
      王朋朋, 姚静, 姜笠, 2019. 贵州白云岩砂化特征及其对隧道支护结构影响. 贵州大学学报(自然科学版), 36(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201903008.htm
      王志杰, 杜逸文, 姜逸帆, 等, 2021. 砂化白云岩地层隧道掌子面失稳机制研究. 岩石力学与工程学报, 40(202): 3118-3126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2012.htm
      熊清蓉, 肖明, 胡田清, 2013. 砂化岩体在开挖干扰下弹塑性损伤数值模拟. 四川大学学报(自然科学版), (1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201301019.htm
      张海泉, 赵其华, 彭社琴, 2012. 美姑河坪头水电站深部白云岩岩溶砂化岩体质量分级. 中国农村水利水电, (7): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201207042.htm
      张良喜, 张海泉, 赵其华, 等, 2012. 四川坪头水电站白云岩砂化特征及发育分布规律. 人民长江, (19): 42-44, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201219020.htm
      张志强, 范俊奇, 曾鹏等, 2023. 基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究. 地球科学, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274
      赵毅, 2019. 在建国家重点水利标志性工程之首——滇中引水工程. 隧道建设(中英文), 39(3): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201903031.htm
      赵毅然, 2021. 滇中引水工程强烈-剧烈砂化白云岩物理力学特性研究(博士毕业论文). 昆明: 昆明理工大学.
      中华人民共和国住房和城乡建设部, 2016. GB 50287-2016水力发电工程地质勘察规范. 北京.
      周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道桑珠岭隧道为例. 地球科学, 47 (6): 2130-2148. doi: 10.3799/dqkx.2021.170
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(8)

      Article views (426) PDF downloads(37) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return