Citation: | Li Linxin, Jiang Hongchen, Huang Liuqin, 2024. Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+. Earth Science, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060 |
Ai, X. F., Wang, H. L., Chen, X. L., et al., 2014. Experiment Research on the Oblem of Nitrite Accumulation in Groundwater during Biological Denitrification. Water Pollution Control, 32: 33-36(in Chinese with English abstract).
|
Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., 2002. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data. Global Biogeochemical Cycles, 16(4): 6-1-6-13. https://doi.org/10.1029/2001gb001811
|
Buchwald, C., Grabb, K., Hansel, C. M., et al., 2016. Constraining the Role of Iron in Environmental Nitrogen Transformations: Dual Stable Isotope Systematics of Abiotic NO2- Reduction by Fe(Ⅱ) and its Production of N2O. Geochimica et Cosmochimica Acta, 186: 1-12. https://doi.org/10.1016/j.gca.2016.04.041
|
Buerge, I. J., Hug, S. J., 1999. Influence of Mineral Surfaces on Chromium(Ⅵ) Reduction by Iron(Ⅱ). Environmental Science & Technology, 33(23): 4285-4291. https://doi.org/10.1021/es981297s
|
Buessecker, S., Imanaka, H., Ely, T., et al., 2022. Mineral-Catalysed Formation of Marine NO and N2O on the Anoxic Early Earth. Nature Geoscience, 15(12): 1056-1063. https://doi.org/10.1038/s41561-022-01089-9
|
Chen, D. D., Liu, T. X., Li, X. M., et al., 2018. Biological and Chemical Processes of Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Pseudogulbenkiania Sp. Strain 2002. Chemical Geology, 476(4): 59-69. https://doi.org/10.1016/j.chemgeo.2017.11.004
|
Chen, G. J., Zhao, W. Q., Yang, Y., et al., 2021. Chemodenitrification by Fe(Ⅱ) and Nitrite: Effects of Temperature and Dual N O Isotope Fractionation. Chemical Geology, 575(1): 120258. https://doi.org/10.1016/j.chemgeo.2021.120258
|
Chen, Q., Ni, J. R., Ma, T., et al., 2015. Bioaugmentation Treatment of Municipal Wastewater with Heterotrophic-Aerobic Nitrogen Removal Bacteria in a Pilot-Scale SBR. Bioresource Technology, 183: 25-32. https://doi.org/10.1016/j.biortech.2015.02.022
|
Cheng, C., Phipps, D., Alkhaddar, R. M., 2006. Thermophilic Aerobic Wastewater Treatment of Waste Metalworking Fluids. Water and Environment Journal, 20(4): 227-232. https://doi.org/10.1111/j.1747-6593.2005.00010.x
|
Cooper, D. C., Picardal, F. W., Schimmelmann, A., et al., 2003. Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella Putrefaciens 200. Applied and Environmental Microbiology, 69(6): 3517-3525. https://doi.org/10.1128/aem.69.6.3517-3525.2003
|
Dopffel, N., Stein, J., Jamieson, J., et al., 2021. Temperature Dependence of Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Strain BoFeN1-Evaluating the Role of Enzymatic Vs. Abiotic Fe(Ⅱ) Oxidation by Nitrite. FEMS Microbiology Ecology, 97(12): 1-15. https://doi.org/10.1093/femsec/fiab155
|
Fahrner, S., 2002. Groundwater Nitrate Removal Using a Bioremediation Trench (Dissertation). University of Western Australia, Perth, 1-86.
|
Fanning, J., 2000. The Chemical Reduction of Nitrate in Aqueous Solution. Coordination Chemistry Reviews, 199(1): 159-179. https://doi.org/10.1016/s0010-8545(99)00143-5
|
Guo, J. H., Liu, X. J., Zhang, Y., et al., 2010. Significant Acidification in Major Chinese Croplands. Science, 327(5968): 1008-1010. https://doi.org/10.1126/science.1182570
|
Hu, J. H., Duan, J. C., Gao, Y., et al., 2022. Effects of Nitrite Nitrogen on Hepatoenterocytosis of Shrimp Infected with Ridgetail White Shrimp. Fishweries Science, 41(4): 664-669 (in Chinese).
|
Jones, L. C., Peters, B., Lezama Pacheco, J. S., et al., 2015. Stable Isotopes and Iron Oxide Mineral Products as Markers of Chemodenitrification. . Environmental Science & Technology, 49(6): 3444-3452. https://doi.org/10.1021/es504862x
|
Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M., et al., 2011. Reduced Iron Induced Nitric Oxide and Nitrous Oxide Emission. Water Research, 45(18): 5945-5952. https://doi.org/10.1016/j.watres.2011.08.056
|
Keeney, D. R., Fillery, I. R., Marx, G. P., 1979. Effect of Temperature on the Gaseous Nitrogen Products of Denitrification in a Silt Loam Soil. Soil Science Society of America Journal, 43(6): 1124-1128. https://doi.org/10.2136/sssaj1979.03615995004300060012x
|
Klueglein, N., Kappler, A., 2013. Abiotic Oxidation of Fe(Ⅱ) by Reactive Nitrogen Species in Cultures of the Nitrate-Reducing Fe(Ⅱ) Oxidizer Acidovorax Sp. Bofen1-Questioning the Existence of Enzymatic Fe(Ⅱ) Oxidation. Geobiology, 11(2): 180-90. https://doi.org/10.1111/gbi.12019.
|
Kopf, S. H., Henny, C., Newman, D. K., 2013. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical Versus Biological Iron Cycling in Anoxic Environments. Environmental Science & Technology, 47(6): 2602-2611. https://doi.org/10.1021/es3049459
|
Li, Z., Sun, Q., Gao, M. Y., 2004. Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4. Angewandte Chemie International Edition, 44(1): 123-126. https://doi.org/10.1002/anie.200460715
|
Lin, M. D., Yu, J. J., Liu, X. Q., et al., 2021. Abnormalities, Mechanisms and Effects of Nitrite Nitrogen, Ammonia Nitrogen and Phosphate in Sansha Bay. Earth Science, 46(11): 4107-4117 (in Chinese with English abstract).
|
Liu, H. B., Chen, T. H., Frost, R. L., 2014. An Overview of the Role of Goethite Surfaces in the Environment. Chemosphere, 103(84): 1-11. https://doi.org/10.1016/j.chemosphere.2013.11.065
|
Liu, T. X., Chen, D. D., Luo, X. B., et al., 2019. Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation: Quantification of Chemodenitrification and Biological Reactions. Geochimica et Cosmochimica Acta, 256: 97-115. https://doi.org/10.1016/j.gca.2018.06.040
|
Liu, Y. Q., Phenrat, T., Lowry, G. V., 2007. Effect of TCE Concentration and Dissolved Groundwater Solutes on NZVI-Promoted TCE Dechlorination and H2 Evolution. Environmental Science & Technology, 41(22): 7881-7887. https://doi.org/10.1021/es0711967
|
Melendres, C. A., Pankuch, M., Li, Y. S., et al., 1992. Surface Enhanced Raman Spectroelectrochemical Studies of the Corrosion Films on Iron and Chromium in Aqueous Solution Environments. Electrochimica Acta, 37(15): 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-v
|
Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
|
Moerland, M. J., Castañares Pérez, L., Ruiz Velasco Sobrino, M. E., et al., 2021. Thermophilic (55 ℃) and Hyper-Thermophilic (70 ℃) Anaerobic Digestion as Novel Treatment Technologies for Concentrated Black Water. Bioresource Technology, 340(1-3): 125705. https://doi.org/10.1016/j.biortech.2021.125705
|
Nelson, D. W., Bremner, J. M., 1970. Gaseous Products of Nitrite Decomposition in Soils. Soil Biology and Biochemistry, 2(3): 203-IN8. https://doi.org/10.1016/0038-0717(70)90008-8
|
Nikolić, A., Hultman, B., 2005. Chemical Denitrification for Nitrogen Removal from Landfill Leachate. Water Science and Technology, 52(10/11): 509-516. https://doi.org/10.2166/wst.2005.0730
|
Nömmik, H., 1956. Investigations on Denitrification in Soil. Acta Agriculturae Scandinavica, 6(2): 195-228. https://doi.org/10.1080/00015125609433269
|
Picetti, R., Deeney, M., Pastorino, S., et al., 2022. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environmental Research, 210: 112988. https://doi.org/10.1016/j.envres.2022.112988
|
Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
|
Saad, O. A. L. O., Conrad, R., 1993. Temperature Dependence of Nitrification, Denitrification, and Turnover of Nitric Oxide in Different Soils. Biology and Fertility of Soils, 15(1): 21-27. https://doi.org/10.1007/bf00336283
|
Sørensen, J., Thorling, L., 1991. Stimulation by Lepidocrocite (7-FeOOH) of Fe(Ⅱ)-Dependent Nitrite Reduction. Geochimica et Cosmochimica Acta, 55(5): 1289-1294. https://doi.org/10.1016/0016-7037(91)90307-q
|
Tan, Y. Q., Chen, M., Hao, Y. M., 2012. High Efficient Removal of Pb (Ⅱ) by Amino-Functionalized Fe3O4 Magnetic Nano-Particles. Chemical Engineering Journal, 191: 104-111. https://doi.org/10.1016/j.cej.2012.02.075
|
Tang, C. L., Zhang, Z. Q., Sun, X. N., 2012. Effect of Common Ions on Nitrate Removal by Zero-Valent Iron from Alkaline Soil. Journal of Hazardous Materials, 231-232(2): 114-119. https://doi.org/10.1016/j.jhazmat.2012.06.042
|
Thomas, C. R., 2021. Abiotic Reduction of Nitrite by Fe(Ⅱ): A Comparison of Rates and N₂O Production. Environmental Science, 23(10): 1531-1541. https://doi.org/10.1039/d1em00222h.
|
Wang, Z., Jiang, Y. H., Awasthi, M. K., et al., 2018. Nitrate Removal by Combined Heterotrophic and Autotrophic Denitrification Processes: Impact of Coexistent Ions. Bioresource Technology, 250(2): 838-845. https://doi.org/10.1016/j.biortech.2017.12.009
|
Weber, K. A., Picardal, F. W., Roden, E. E., 2001. Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe(Ⅱ) Compounds. Environmental Science & Technology, 35(8): 1644-1650. https://doi.org/10.1021/es0016598
|
艾小凡, 王鹤立, 陈祥龙, 等, 2014. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究. 环境工程, 32: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201401010.htm
|
胡吉卉, 段健诚, 高阳, 等, 2022. 亚硝态氮对虾肝肠胞虫感染脊尾白虾的影响. 水产科学, 41(4): 664-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CHAN202204019.htm
|
林沐东, 于俊杰, 刘晓强, 等, 2021. 三沙湾亚硝酸氮、氨氮、磷酸盐的异常、机制及影响. 地球科学, 46(11): 4107-4117. doi: 10.3799/dqkx.2020.368
|
屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
|