• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Lyu Chuan, Gao Jianfeng, Qi Liang, Huang Xiaowen, 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403. doi: 10.3799/dqkx.2023.061
    Citation: Lyu Chuan, Gao Jianfeng, Qi Liang, Huang Xiaowen, 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403. doi: 10.3799/dqkx.2023.061

    Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems

    doi: 10.3799/dqkx.2023.061
    • Received Date: 2022-09-30
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • With the development of chemical procedures and instrumental analyses, Re-Os isotopes in low-Re sulfides and oxides have been precisely analyzed, making it possible to date more types of deposits and reveal ore genesis. However, accumulating data and refinement research work have revealed many problems in the application of sulfides Re-Os dating. Processes including sample collection, Re and Os separation and purification and instrumental analysis, could affect the results of Re-Os isotopic compositions. In this article it reviews the characteristics of sulfides Re-Os isotope system, introduces separation and purification methods, and mass spectrometry analysis techniques, and systematically discusses possible influencing factors of sulfide Re-Os dating. A summary of precautions during the Re-Os dating works, to provide some help for future works.

       

    • 致谢: 衷心感谢两名匿名评审专家提出的宝贵意见和建议.
    • Barnes, S. J., Ripley, E. M., 2016. Highly Siderophile and Strongly Chalcophile Elements in Magmatic Ore Deposits. Reviews in Mineralogy and Geochemistry, 81(1): 725-774. https://doi.org/10.2138/rmg.2016.81.12
      Becker, H., Horan, M. F., Walker, R. J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
      Birck, J. L., Barman, M. R., Capmas, F., 1997. Re-Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards Newsletter, 21(1): 19-27. https://doi.org/10.1111/j.1751-908x.1997.tb00528.x
      Brauns, C. M., 2001. A Rapid, Low-Blank Technique for the Extraction of Osmium from Geological Samples. Chemical Geology, 176(1-4): 379-384. https://doi.org/10.1016/s0009-2541(00)00371-5
      Brenan, J. M., Cherniak, D. J., Rose, L. A., 2000. Diffusion of Osmium in Pyrrhotite and Pyrite: Implications for Closure of the Re-Os Isotopic System. Earth and Planetary Science Letters, 180(3-4): 399-413. https://doi.org/10.1016/s0012-821x(00)00165-5
      Bushmin, S. A., Belyatsky, B. V., Krymsky, R. S., et al., 2013. Isochron Re-Os Age of Gold from Mayskoe Gold-Quartz Vein Deposit (Northern Karelia, Baltic Shield). Doklady Earth Sciences, 448(1): 54-57. https://doi.org/10.1134/s1028334x13010030
      Carius, H., 1865. Bestimmung von Schwefel, Chlor, Phosphor Etc. in Organischen Substanzen. Zeitschrift Für Analytische Chemie, 4(1): 451-455. https://doi.org/10.1007/bf01347470
      Chen, M. H., Mao, J. W., Qu, W. J., et al., 2007. Re-Os Dating of Arsenian Pyrites from the Lannigou Gold Deposit, Zhenfeng, Guizhou Province, and Its Geological Significances. Geological Review, 53(3): 371-382(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.03.010
      Colodner, D., Sachs, J., Ravizza, G., et al., 1993. The Geochemical Cycle of Rhenium: A Reconnaissance. Earth and Planetary Science Letters, 117(1-2): 205-221. https://doi.org/10.1016/0012-821x(93)90127-u
      Cook, D. L., Walker, R. J., Horan, M. F., et al., 2004. Pt-Re-Os Systematics of Group IIAB and IIIAB Iron Meteorites. Geochimica et Cosmochimica Acta, 68(6): 1413-1431. https://doi.org/10.1016/j.gca.2003.09.017
      Creaser, R. A., Papanastassiou, D. A., Wasserburg, G. J., 1991. Negative Thermal Ion Mass Spectrometry of Osmium, Rhenium and Iridium. Geochimica et Cosmochimica Acta, 55(1): 397-401. https://doi.org/10.1016/0016-7037(91)90427-7
      Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4): 65-78. https://doi.org/10.1016/s0012-821X(96)00204-x
      Dellinger, M., Hilton, R. G., Nowell, G. M., 2020. Measurements of Rhenium Isotopic Composition in Low-Abundance Samples. Journal of Analytical Atomic Spectrometry, 35(2): 377-387. https://doi.org/10.1039/c9ja00288j
      Dickson, A. J., Hsieh, Y. T., Bryan, A., 2020. The Rhenium Isotope Composition of Atlantic Ocean Seawater. Geochimica et Cosmochimica Acta, 287: 221-228. https://doi.org/10.1016/j.gca.2020.02.020
      Du, A. D., He, H. L., Yin, N. W., et al., 1994. A Study on the Rhenium-Osmium Reochro-Nometry of Molybdenites. Acta Geologica Sinica, 68(4): 339-347(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1994.04.005
      Du, A. D., Qu, W. J., Li, C., et al., 2009. A Review on the Development of Re-Os Isotopic Dating Methods and Techniques. Rock and Mineral Analysis, 28(3): 288-304(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2009.03.019
      Du, A. D., Sun, D. Z., Wang, S. X., et al., 2002. The Re-Os Dating Using Modified Alkali Fusion Method. Rock and Mineral Analysis, 21(2): 100-104(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2002.02.004
      Du, A. D., Zhao, D. M., Gao, H. T., et al., 1998. A Study on Re-Os Chemical Separation Method for NTIMS. Journal of Chinese Mass Spectrometry Society, 19(3): 11-18(in Chinese with English abstract).
      Faris, J. P., 1960. Adsorption of Elements from Hydrofluoric Acid by Anion Exchange. Analytical Chemistry, 32(4): 520-522. https://doi.org/10.1021/ac60160a019
      Fleische, M., 1965. Geochemistry Mineralogy and Genetic Types of Deposits of Rare Elements. I. Geochemistry of Rare Elements. 2. Minleralogy of Rare Elements. American Mineralogist, 50 (5-6): 819.
      Gannoun, A., Burton, K. W., Parkinson, I. J., et al., 2007. The Scale and Origin of the Osmium Isotope Variations in Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 259(3-4): 541-556. https://doi.org/10.1016/j.epsl.2007.05.014
      Gao, B. Y., Li, W. J., Chu, Z. Y., et al., 2022. An Improved Solvent Extraction Procedure for Re Isotopic Measurements. Microchemical Journal, 180: 107568. https://doi.org/10.1016/j.microc.2022.107568
      Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012. Heterogeneous Os Isotope Compositions in the Kalatongke Sulfide Deposit, NW China: The Role of Crustal Contamination. Mineralium Deposita, 47(7): 731-738. https://doi.org/10.1007/s00126-012-0414-7
      Gordon, C. L., Schlecht, W. G., Wichers, E., 1944. Use of Sealed Tubes for the Preparation of Acid Solutions of Samples for Analysis, or for Small-Scale Refining: Pressures of Acids Heated above 100 Degrees C. Journal of Research of the National Bureau of Standards, 33(6): 457. https://doi.org/10.6028/jres.033.027
      Gou, T. Z., Zhong, H., Qi, L., et al., 2009. Study on Extraction of Rhenium with Isoamylol and Its Application in Geological Samples. Journal of Instrumental Analysis, 28(9): 1027-1030(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4957.2009.09.008
      Gramlich, J. W., Murphy, T. J., Garner, E. L., et al., 1973. Absolute Isotopic Abundance Ratio and Atomic Weight of a Reference Sample of Rhenium. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 77A(6): 691. https://doi.org/10.6028/jres.077a.040
      He, H. L., Du, A. D., Zou, X. Q., et al., 1993. A Study on Rhenium-Osmium Isotope Systematics by Using Inductively Coupled Plasma Mass Spectrometry and Its Application to Molybdenite Dating. Rock and Mineral Analysis, 12(3): 161-165(in Chinese with English abstract).
      He, H. L., Du, A. D., Zou, X. Q., et al., 1994. Chemical Behavior of Osmium in the Rhenium-Osmium Geochronometry. Chinese Journal of Analytieal Chemistry, 22(2): 109-114(in Chinese with English abstract).
      Hnatyshin, D., Creaser, R. A., Meffre, S., et al., 2020. Understanding the Microscale Spatial Distribution and Mineralogical Residency of Re in Pyrite: Examples from Carbonate-Hosted Zn-Pb Ores and Implications for Pyrite Re-Os Geochronology. Chemical Geology, 533: 119427. https://doi.org/10.1016/j.chemgeo.2019.119427
      Hnatyshin, D., Creaser, R. A., Wilkinson, J. J., et al., 2015. Re-Os Dating of Pyrite Confirms an Early Diagenetic Onset and Extended Duration of Mineralization in the Irish Zn-Pb Ore Field. Geology, 43(2): 143-146. https://doi.org/10.1130/g36296.1
      Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., et al., 2019. First In Situ Re-Os Dating of Molybdenite by LA-ICP-MS/MS. Mineralium Deposita, 54(6): 821-828. https://doi.org/10.1007/s00126-019-00889-1
      Huang, S. Q., Song, Y. C., Zhou, L. M., et al., 2021a. Influence of Organic Matter on Re-Os Dating of Sulfides: Insights from the Giant Jinding Sediment-Hosted Zn-Pb Deposit, China. Economic Geology. https://doi.org/10.5382/econgeo.4881
      Huang, X. W., Qi, L., Gao, J. F., et al., 2021b. Re-Os Dating of Molybdenite via Improved Alkaline Fusion. Journal of Analytical Atomic Spectrometry, 36(1): 64-69. https://doi.org/10.1039/d0ja00371a
      Huang, X. W., Qi, L., Gao, J. F., et al., 2016. Some Thoughts on Sulfide Re-Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440, 400(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.03.004
      Huang, X. W., Zhou, M. F., Qi, L., et al., 2013. Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-Hydrothermal Fe Deposit, NW China. Mineralium Deposita, 48(8): 925-946. https://doi.org/10.1007/s00126-013-0467-2
      Lang, X. H., Tang, J. X., Chen, Y. C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No. I. Earth Science, 37(3): 515-525(in Chinese with English abstract).
      Li, C., Qu, W. J., Zhou, L. M., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2010.01.004
      Li, J., Zhong, L. F., Xu, J. F., et al., 2009. A BPHA Extraction Method for Chemical Separation of Re for Molybdenite Re-Os Dating. Geochimica, 38(6): 558-564(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.06.005
      Li, W. J., Jin, X. D., Gao, B. Y., et al., 2022. Chalcopyrite from the Xiaotongchang Cu Deposit: A New Sulfide Reference Material for Low-Level Re-Os Geochronology. Geostandards and Geoanalytical Research, 46(2): 321-332. https://doi.org/10.1111/ggr.12420
      Li, Y., Selby, D., Li, X. H., et al., 2018. Multisourced Metals Enriched by Magmatic-Hydrothermal Fluids in Stratabound Deposits of the Middle-Lower Yangtze River Metallogenic Belt, China. Geology, 46(5): 391-394. https://doi.org/10.1130/g39995.1
      Liu, B. A., Sun, P. H., Wu, Q. H., et al., 2022. Timing and Origin of Orogenic Gold Mineralization in the Kanggurtag Area, NW China. Ore Geology Reviews, 149: 105080. https://doi.org/10.1016/j.oregeorev.2022.105080
      Liu, R., Hu, L., Humayun, M., 2017. Natural Variations in the Rhenium Isotopic Composition of Meteorites. Meteoritics & Planetary Science, 52(3): 479-492. https://doi.org/10.1111/maps.12803
      Liu, Y. C., Song, Y. C., Fard, M., et al., 2019. Pyrite Re-Os Age Constraints on the Irankuh Zn-Pb Deposit, Iran, and Regional Implications. Ore Geology Reviews, 104: 148-159. https://doi.org/10.1016/j.oregeorev.2018.11.002
      Luck, J. M., Allègre, C. J., 1982. The Study of Molybdenites through the 187 Chronometer. Earth and Planetary Science Letters, 61(2): 291-296. https://doi.org/10.1016/0012-821x(82)90060-7
      Lyu, C., Gao, J. F., Qi, L., et al., 2020. Re-Os Isotope System of Sulfide from the Fule Carbonate-Hosted Pb-Zn Deposit, SW China: Implications for Re-Os Dating of Pb-Zn Mineralization. Ore Geology Reviews, 121: 103558. https://doi.org/10.1016/j.oregeorev.2020.103558
      Malinovsky, D., Rodushkin, I., Baxter, D., et al., 2002. Simplified Method for the Re-Os Dating of Molybdenite Using Acid Digestion and Isotope Dilution ICP-MS. Analytica Chimica Acta, 463(1): 111-124. https://doi.org/10.1016/s0003-2670(02)00372-0
      Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
      Markey, R., Stein, H., Morgan, J., 1998. Highly Precise Re-Os Dating for Molybdenite Using Alkaline Fusion and NTIMS. Talanta, 45(5): 935-946. https://doi.org/10.1016/s0039-9140(97)00198-7
      Miller, C. A., Peucker-Ehrenbrink, B., Ball, L., 2009. Precise Determination of Rhenium Isotope Composition by Multi-Collector Inductively-Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 24(8): 1069-1078. https://doi.org/10.1039/b818631f
      Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D., et al., 2011. Re-Assessing the Surface Cycling of Molybdenum and Rhenium. Geochimica et Cosmochimica Acta, 75(22): 7146-7179. https://doi.org/10.1016/j.gca.2011.09.005
      Miller, C. A., Peucker-Ehrenbrink, B., Schauble, E. A., 2015. Theoretical Modeling of Rhenium Isotope Fractionation, Natural Variations across a Black Shale Weathering Profile, and Potential as a Paleoredox Proxy. Earth and Planetary Science Letters, 430: 339-348. https://doi.org/10.1016/j.epsl.2015.08.008
      Morelli, R. M., Bell, C. C., Creaser, R. A., et al., 2010. Constraints on the Genesis of Gold Mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from Rhenium-Osmium Sulfide Geochronology. Mineralium Deposita, 45(5): 461-480. https://doi.org/10.1007/s00126-010-0284-9
      Morgan, J. W., Walker, R. J., 1989. Isotopic Determinations of Rhenium and Osmium in Meteorites by Using Fusion, Distillation and Ion-Exchange Separations. Analytica Chimica Acta, 222(1): 291-300. https://doi.org/10.1016/s0003-2670(00)81904-2
      Mountain, B. W., Wood, S. A., 1988. Solubility and Transport of Platinum-Group Elements in Hydrothermal Solutions: Thermodynamic and Physical Chemical Constraints. In: Prichard, H. M., Potts, P. J., Bowles, J. F. W., eds., Geo-Platinum 87. Springer, Dordrecht, 57-82. https://doi.org/10.1007/978-94-009-1353-0_8
      Nagler, T. F., Frei, R., 1997. "Plug in" Os Distillation. Schweiz Mineral Petrogr Mitt, 77: 123 -127.
      Pierotti, G, Mathur, R, Smith, R. C., et al., 2006. Re-Os Molybdenite Ages for the Antietam Reservoir, Eastern Pennsylvania, a Story of Open System Behavior Re-Os Isotopes in Molybdenite. Abstracts with Programs-Geological Society of America. Northeastern Section Annual Meeting. U. S. A., 24.
      Puchtel, I. S., Humayun, M., Walker, R. J., 2007. Os-Pb-Nd Isotope and Highly Siderophile and Lithophile Trace Element Systematics of Komatiitic Rocks from the Volotsk Suite, SE Baltic Shield. Precambrian Research, 158(1-2): 119-137. https://doi.org/10.1016/j.precamres.2007.04.004
      Qi, L. A., Gao, J. F., Zhou, M. F., et al., 2013. The Design of Re-Usable Carius Tubes for the Determination of Rhenium, Osmium and Platinum-Group Elements in Geological Samples. Geostandards and Geoanalytical Research, 37(3): 345-351. https://doi.org/10.1111/j.1751-908x.2012.00211.x
      Qi, L., Zhou, M. F., Gao, J. F., et al., 2010. An Improved Carius Tube Technique for Determination of Low Concentrations of Re and Os in Pyrites. Journal of Analytical Atomic Spectrometry, 25(4): 585-589. https://doi.org/10.1039/B919016C
      Qi, L., Zhou, M. F., Yan, Z. F., et al., 2006. An Improved Carius Tube Technique for Digesting Geological Samples in the Determination of PGEs and Re by ICP-MS. Geochimica, 35(6): 667-674(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2006.06.013
      Qu, W. J., Chen, J. F., Du, A. D., et al., 2012. Re-Os Dating: Constraints on Mineralization Age of Magmatic Cu-Ni Sulfide Ore Deposit. Mineral Deposits, 31(1): 151-160(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.013
      Ren, Y. S., Wang, H., Qu, W. J., et al., 2011. Re-Os Isotopic Dating of Molybdenite from Xiaoxi'nancha Copper-Gold Deposit in the Yanbian Area and Its Geological Significance. Earth Science, 36(4): 721-728(in Chinese with English abstract).
      Reisberg, L., Meisel, T., 2002. The Re-Os Isotopic System: A Review of Analytical Techniques. Geostandards and Geoanalytical Research, 26(3): 249-267. https://doi.org/10.1111/j.1751-908x.2002.tb00633.x
      Selby, D., Creaser, R. A., 2001. Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology, 96(1): 197-204. https://doi.org/10.2113/gsecongeo.96.1.197
      Shi, K. T., Wang, K. Y., Ulrich, T., et al., 2021. Two Mineralization Events in the Laozuoshan Au Deposit, North-East China: Evidence from Re-Os Geochronology and Trace Element Geochemistry. Geological Journal, 56(4): 1974-1986. https://doi.org/10.1002/gj.4036
      Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 67(13): 2136-2141. https://doi.org/10.1021/ac00109a036
      Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099-1102. https://doi.org/10.1126/science.271.5252.1099
      Spry, P. G., Mathur, R. D., Bonsall, T. A., et al., 2014. Re-Os Isotope Evidence for Mixed Source Components in Carbonate-Replacement Pb-Zn-Ag Deposits in the Lavrion District, Attica, Greece. Mineralogy and Petrology, 108(4): 503-513. https://doi.org/10.1007/s00710-013-0314-2
      Stein, H. J., 2000. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnas Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Economic Geology, 95(8): 1657-1671. https://doi.org/10.2113/95.8.1657
      Stein, H. J., Markey, R. J., Morgan, J. W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479-486. https://doi.org/10.1046/j.1365-3121.2001.00395.x
      Stein, H. J., Scherstén, A., Hannah, J., et al., 2003. Subgrain-Scale Decoupling of Re and 187Os and Assessment of Laser Ablation ICP-MS Spot Dating in Molybdenite. Geochimica et Cosmochimica Acta, 67(19): 3673-3686. https://doi.org/10.1016/s0016-7037(03)00269-2
      Sun, Y. G., Li, B. L., Ding, Q. F., et al., 2020. Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing'an Range, Northeast China: Evidence from Fluid Inclusions, H-O-S-Pb Isotopes, and Re-Os Geochronology. Minerals, 10(7): 591. https://doi.org/10.3390/min10070591
      Sun, Y. L., Zhou, M. F., Sun, M., 2001. Routine Os Analysis by Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry: OsO4 in Water Solution Gives High Sensitivity. Journal of Analytical Atomic Spectrometry, 16(4): 345-349. https://doi.org/10.1039/b008533m
      Suzuki, K., Shimizu, H., Masuda, A., 1996. ReOs Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 60(16): 3151-3159. https://doi.org/10.1016/0016-7037(96)00164-0
      Takahashi, Y., Uruga, T., Suzuki, K., et al., 2007. An Atomic Level Study of Rhenium and Radiogenic Osmium in Molybdenite. Geochimica et Cosmochimica Acta, 71(21): 5180-5190. https://doi.org/10.1016/j.gca.2007.08.007
      Veselovský, F., Ackerman, L., Pašava, J., et al., 2018. Multiphase Formation of the Obří Důl Polymetallic Skarn Deposit, West Sudetes, Bohemian Massif: Geochemistry and Re-Os Dating of Sulfide Mineralization. Mineralium Deposita, 53(5): 665-682. https://doi.org/10.1007/s00126-017-0766-0
      Völkening, J., Walczyk, T., Heumann, K. G., 1991. Osmium Isotope Ratio Determinations by Negative Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2): 147-159. https://doi.org/10.1016/0168-1176(91)80077-z
      Walker, R. J., 1988. Low-Blank Chemical Separation of Rhenium and Osmium from Gram Quantities of Silicate Rock for Measurement by Resonance Ionization Mass Spectrometry. Analytical Chemistry, 60(11): 1231-1234. https://doi.org/10.1021/ac00162a026
      Walker, R. J., Fassett, J. D., 1986. Isotopic Measurement of Subananogram Quantities of Rhenium and Osmium by Resonance Ionization Mass Spectrometry. Analytical Chemistry, 58(14): 2923-2927. https://doi.org/10.1021/ac00127a007
      Walker, R. J., Morgan, J. W., Horan, M. F., et al., 1994. Re-Os Isotopic Evidence for an Enriched-Mantle Source for the Noril'sk-Type, Ore-Bearing Intrusions, Siberia. Geochimica et Cosmochimica Acta, 58(19): 4179-4197. https://doi.org/10.1016/0016-7037(94)90272-0
      Walker, R. J., Morgan, J. W., Naldrett, A. J., et al., 1991. Re-Os Isotope Systematics of Ni-Cu Sulfide Ores, Sudbury Igneous Complex, Ontario: Evidence for a Major Crustal Component. Earth and Planetary Science Letters, 105(4): 416-429. https://doi.org/10.1016/0012-821x(91)90182-h
      Wang, G. Q., Sun, T. T., Xu, J. F., 2017. A Comparison Using Faraday Cups with 1013 Ω Amplifiers and a Secondary Electron Multiplier to Measure Os Isotopes by Negative Thermal Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 31 (19): 1616-1622. https://doi.org/10.1002/rcm.7943
      Wang, G. Q., Vollstaedt, H., Xu, J. F., et al., 2019. High-Precision Measurement of 187Os/188Os Isotope Ratios of Nanogram to Picogram Amounts of Os in Geological Samples by N-TIMS Using Faraday Cups Equipped with 1013 Ω Amplifiers. Geostandards and Geoanalytical Research, 43(3): 419-433. https://doi.org/10.1111/ggr.12269
      Wang, K. X., Zhai, D. G., Zhang, L. L., et al., 2022a. Calcite U-Pb, Pyrite Re-Os Geochronological and Fluid Inclusion and H-O Isotope Studies of the Dafang Gold Deposit, South China. Ore Geology Reviews, 150: 105183. https://doi.org/10.1016/j.oregeorev.2022.105183
      Wang, L., Zheng, Y. C., Hou, Z. Q., et al., 2022b. The Subduction-Related Saindak Porphyry Cu-Au Deposit Formed by Remelting of a Thickened Juvenile Lower Crust underneath the Chagai Belt, Pakistan. Ore Geology Reviews, 149: 105062. https://doi.org/10.1016/j.oregeorev.2022.105062
      Wang, X. L., Liu, Y. N., Xiong, Z. H., 1995. Study on the Extraction of Rhenium with Ketones. Chemical Reagents, 17(3): 143-145(in Chinese with English abstract).
      Xiong, Y. L., Wood, S. A., 1999. Experimental Determination of the Solubility of ReO2 and the Dominant Oxidation State of Rhenium in Hydrothermal Solutions. Chemical Geology, 158(3-4): 245-256. https://doi.org/10.1016/s0009-2541(99)00050-9
      Yang, M. Z., 1983. New Genetic Types of Rhenium-Bearing Deposits and Their Geological Prospecting Direction. Geology-Geochemistry, 11(1): 13-14(in Chinese).
      Yang, M. Z., Hou, K., Lu, J. P., et al., 2012. Chronology of Molybdenum-Lead-Zinc Polymetallic Deposit of Suo Naga, Dong Ujimqin Banner Region. Earth Science, 37(6): 1327-1337(in Chinese with English abstract).
      Yang, S. H., Zhou, M. F., Lightfoot, P. C., et al., 2014. Re-Os Isotope and Platinum-Group Element Geochemistry of the Pobei Ni-Cu Sulfide-Bearing Mafic-Ultramafic Complex in the Northeastern Part of the Tarim Craton. Mineralium Deposita, 49(3): 381-397. https://doi.org/10.1007/s00126-013-0496-x
      Yang, Z., Jiang, H., Yang, M. G., et al., 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356(in Chinese with English abstract).
      Zhai, D. G., Williams-Jones, A., Liu, J. J., et al., 2019. Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China. Economic Geology, 114 (5): 897-915. https://doi.org/10.5382/econgeo.2019.4667
      Zhao, X. B., Xue, C., Zu, B., et al., 2022. Geology and Genesis of the Unkurtash Intrusion-Related Gold Deposit, Tien Shan, Kyrgyzstan. Economic Geology. https://doi.org/10.5382/econgeo.4918
      Zhi, X. C., 1999. Re-Os Isotope System and Dating of Continental Lithospheric Mantle. Chinese Science Bulletin, 44(22): 2362-2371(in Chinese). doi: 10.1360/csb1999-44-22-2362
      Zhou, L. M., Gao, B. Y., Wang, L. B., et al., 2012. Improvements on the Separation Method of Osmium by Direct Distillation in Carius Tube. Rock and Mineral Analysis, 31(3): 413-418(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2012.03.005
      Zimmerman, A., Yang, G., Stein, H., et al., 2021. Addressing Molybdenite 187Re Parent-187Os Daughter Intra-Crystalline Decoupling in Light of Recent In-Situ Micro-Scale Observations. Research Square. https://doi.org/10.21203/rs.3.rs-778623/v1
      陈懋弘, 毛景文, 屈文俊, 等, 2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义. 地质论评, 53(3): 371-382. doi: 10.3321/j.issn:0371-5736.2007.03.010
      杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347.
      杜安道, 屈文俊, 李超, 等, 2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019
      杜安道, 孙德忠, 王淑贤, 等, 2002. 铼-锇定年法中碱熔分解样品方法的改进. 岩矿测试, 21(2): 100-104.
      杜安道, 赵敦敏, 高洪涛, 等, 1998. 负离子热表面电离质谱测定中的铼、锇同位素试样化学分离方法研究. 质谱学报, 19(3): 11-18.
      苟体忠, 钟宏, 漆亮, 等, 2009. 地质样品中痕量铼的异戊醇萃取研究. 分析测试学报, 28(9): 1027-1030.
      何红蓼, 杜安道, 邹晓秋, 等, 1993. 铼-锇同位素的等离子体质谱法测定及其在辉钼矿测年中的应用. 岩矿测试, 12(3): 161-165.
      何红蓼, 杜安道, 邹晓秋, 等, 1994. 铼-锇测年法中锇的化学行为的研究. 分析化学, 22(2): 109-114.
      黄小文, 漆亮, 高剑峰, 等, 2016. 关于硫化物Re-Os同位素定年的一些思考. 矿物岩石地球化学通报, 35(3): 432-440, 400. doi: 10.3969/j.issn.1007-2802.2016.03.004
      郎兴海, 唐菊兴, 陈毓川, 等, 2012. 西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用: 来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据. 地球科学, 37(3): 515-525. doi: 10.3799/dqkx.2012.058
      李超, 屈文俊, 周利敏, 等, 2010. Carius管直接蒸馏快速分离锇方法研究. 岩矿测试, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004
      李杰, 钟立峰, 许继峰, 等, 2009. 一种简单的辉钼矿Re-Os同位素年龄测定中Re化学分离方法: "钽试剂"萃取法. 地球化学, 38(6): 558-564.
      毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005
      漆亮, 周美夫, 严再飞, 等, 2006. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量. 地球化学, 35(6): 667-674.
      屈文俊, 陈江峰, 杜安道, 等, 2012. Re-Os同位素定年对岩浆型Cu-Ni硫化物矿床成矿时代的制约. 矿床地质, 31(1): 151-160.
      任云生, 王辉, 屈文俊, 等, 2011. 延边小西南岔铜金矿床辉钼矿Re-Os同位素测年及其地质意义. 地球科学, 36(4): 721-728. doi: 10.3799/dqkx.2011.072
      汪小琳, 刘亦农, 熊宗华, 1995. 酮类试剂萃取分离铼的研究. 化学试剂, 17(3): 143-145.
      杨梅珍, 侯坤, 陆建培, 等, 2012. 东乌珠穆沁旗索纳嘎钼铅锌多金属矿床成岩成矿年代学. 地球科学, 37(6): 1327-1337. doi: 10.3799/dqkx.2012.140
      杨敏之, 1983. 含铼矿床的新成因类型及其地质找矿方向. 地质地球化学, 11(1): 13-14.
      杨震, 姜华, 杨明国, 等, 2017. 冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地球科学, 42(3): 339-356. doi: 10.3799/dqkx.2017.026
      支霞臣, 1999. Re-Os同位素体系和大陆岩石圈地幔定年. 科学通报, 44(22): 2362-2371. doi: 10.3321/j.issn:0023-074X.1999.22.002
      周利敏, 高炳宇, 王礼兵, 等, 2012. Carius管直接蒸馏快速分离锇方法的改进. 岩矿测试, 31(3): 413-418.
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060255075100
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.4 %FULLTEXT: 31.4 %META: 59.8 %META: 59.8 %PDF: 8.8 %PDF: 8.8 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.1 %其他: 11.1 %其他: 0.5 %其他: 0.5 %China: 0.5 %China: 0.5 %上海: 2.1 %上海: 2.1 %上饶: 0.0 %上饶: 0.0 %东京: 0.1 %东京: 0.1 %东莞: 0.2 %东莞: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %俄勒冈: 0.0 %俄勒冈: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %利兹: 0.0 %利兹: 0.0 %北京: 22.7 %北京: 22.7 %十堰: 0.3 %十堰: 0.3 %南京: 0.9 %南京: 0.9 %南昌: 0.4 %南昌: 0.4 %南通: 0.2 %南通: 0.2 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.7 %呼和浩特: 0.7 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %大阪: 0.1 %大阪: 0.1 %天水: 0.0 %天水: 0.0 %天津: 2.3 %天津: 2.3 %威海: 0.1 %威海: 0.1 %宁波: 0.0 %宁波: 0.0 %安康: 0.7 %安康: 0.7 %宣城: 0.3 %宣城: 0.3 %屯昌: 0.1 %屯昌: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %巴黎: 0.0 %巴黎: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 2.0 %张家口: 2.0 %得梅因: 0.0 %得梅因: 0.0 %成都: 0.5 %成都: 0.5 %扬州: 0.3 %扬州: 0.3 %抚州: 0.2 %抚州: 0.2 %拉萨: 0.0 %拉萨: 0.0 %新北: 0.1 %新北: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.5 %昆明: 1.5 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 2.2 %武汉: 2.2 %比斯开省: 0.0 %比斯开省: 0.0 %沈阳: 0.4 %沈阳: 0.4 %河源: 0.1 %河源: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.5 %济南: 0.5 %浦那: 0.1 %浦那: 0.1 %海东: 0.1 %海东: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湛江: 0.2 %湛江: 0.2 %漯河: 2.0 %漯河: 2.0 %濮阳: 0.0 %濮阳: 0.0 %焦作: 0.1 %焦作: 0.1 %珀斯: 0.1 %珀斯: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.5 %福州: 0.5 %科尼亚: 0.0 %科尼亚: 0.0 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芝加哥: 0.7 %芝加哥: 0.7 %莫斯科: 0.6 %莫斯科: 0.6 %菏泽: 0.1 %菏泽: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 7.4 %西宁: 7.4 %西安: 1.5 %西安: 1.5 %西雅图: 0.1 %西雅图: 0.1 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 1.7 %贵阳: 1.7 %达州: 0.4 %达州: 0.4 %运城: 0.9 %运城: 0.9 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.0 %郑州: 1.0 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.1 %金华: 0.1 %铜陵: 0.0 %铜陵: 0.0 %银川: 0.1 %银川: 0.1 %长沙: 2.7 %长沙: 2.7 %阜新: 0.1 %阜新: 0.1 %青岛: 1.0 %青岛: 1.0 %香港: 0.2 %香港: 0.2 %其他其他China上海上饶东京东莞临汾丹东乌鲁木齐俄勒冈保定兰州利兹北京十堰南京南昌南通合肥呼和浩特哈尔滨哥伦布嘉兴大阪天水天津威海宁波安康宣城屯昌巴音郭楞巴黎常州常德平顶山广州廊坊张家口得梅因成都扬州抚州拉萨新北无锡昆明晋城朝阳杭州格兰特县桂林武汉比斯开省沈阳河源洛阳济南浦那海东海口淄博深圳温州渭南湛江漯河濮阳焦作珀斯石家庄福州科尼亚芒廷维尤芝加哥莫斯科菏泽衡阳西宁西安西雅图诺伊达诺沃克贵阳达州运城邯郸郑州鄂州重庆金华铜陵银川长沙阜新青岛香港

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (1197) PDF downloads(178) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return