Citation: | Lyu Chuan, Gao Jianfeng, Qi Liang, Huang Xiaowen, 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403. doi: 10.3799/dqkx.2023.061 |
Barnes, S. J., Ripley, E. M., 2016. Highly Siderophile and Strongly Chalcophile Elements in Magmatic Ore Deposits. Reviews in Mineralogy and Geochemistry, 81(1): 725-774. https://doi.org/10.2138/rmg.2016.81.12
|
Becker, H., Horan, M. F., Walker, R. J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
|
Birck, J. L., Barman, M. R., Capmas, F., 1997. Re-Os Isotopic Measurements at the Femtomole Level in Natural Samples. Geostandards Newsletter, 21(1): 19-27. https://doi.org/10.1111/j.1751-908x.1997.tb00528.x
|
Brauns, C. M., 2001. A Rapid, Low-Blank Technique for the Extraction of Osmium from Geological Samples. Chemical Geology, 176(1-4): 379-384. https://doi.org/10.1016/s0009-2541(00)00371-5
|
Brenan, J. M., Cherniak, D. J., Rose, L. A., 2000. Diffusion of Osmium in Pyrrhotite and Pyrite: Implications for Closure of the Re-Os Isotopic System. Earth and Planetary Science Letters, 180(3-4): 399-413. https://doi.org/10.1016/s0012-821x(00)00165-5
|
Bushmin, S. A., Belyatsky, B. V., Krymsky, R. S., et al., 2013. Isochron Re-Os Age of Gold from Mayskoe Gold-Quartz Vein Deposit (Northern Karelia, Baltic Shield). Doklady Earth Sciences, 448(1): 54-57. https://doi.org/10.1134/s1028334x13010030
|
Carius, H., 1865. Bestimmung von Schwefel, Chlor, Phosphor Etc. in Organischen Substanzen. Zeitschrift Für Analytische Chemie, 4(1): 451-455. https://doi.org/10.1007/bf01347470
|
Chen, M. H., Mao, J. W., Qu, W. J., et al., 2007. Re-Os Dating of Arsenian Pyrites from the Lannigou Gold Deposit, Zhenfeng, Guizhou Province, and Its Geological Significances. Geological Review, 53(3): 371-382(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.03.010
|
Colodner, D., Sachs, J., Ravizza, G., et al., 1993. The Geochemical Cycle of Rhenium: A Reconnaissance. Earth and Planetary Science Letters, 117(1-2): 205-221. https://doi.org/10.1016/0012-821x(93)90127-u
|
Cook, D. L., Walker, R. J., Horan, M. F., et al., 2004. Pt-Re-Os Systematics of Group IIAB and IIIAB Iron Meteorites. Geochimica et Cosmochimica Acta, 68(6): 1413-1431. https://doi.org/10.1016/j.gca.2003.09.017
|
Creaser, R. A., Papanastassiou, D. A., Wasserburg, G. J., 1991. Negative Thermal Ion Mass Spectrometry of Osmium, Rhenium and Iridium. Geochimica et Cosmochimica Acta, 55(1): 397-401. https://doi.org/10.1016/0016-7037(91)90427-7
|
Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4): 65-78. https://doi.org/10.1016/s0012-821X(96)00204-x
|
Dellinger, M., Hilton, R. G., Nowell, G. M., 2020. Measurements of Rhenium Isotopic Composition in Low-Abundance Samples. Journal of Analytical Atomic Spectrometry, 35(2): 377-387. https://doi.org/10.1039/c9ja00288j
|
Dickson, A. J., Hsieh, Y. T., Bryan, A., 2020. The Rhenium Isotope Composition of Atlantic Ocean Seawater. Geochimica et Cosmochimica Acta, 287: 221-228. https://doi.org/10.1016/j.gca.2020.02.020
|
Du, A. D., He, H. L., Yin, N. W., et al., 1994. A Study on the Rhenium-Osmium Reochro-Nometry of Molybdenites. Acta Geologica Sinica, 68(4): 339-347(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1994.04.005
|
Du, A. D., Qu, W. J., Li, C., et al., 2009. A Review on the Development of Re-Os Isotopic Dating Methods and Techniques. Rock and Mineral Analysis, 28(3): 288-304(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2009.03.019
|
Du, A. D., Sun, D. Z., Wang, S. X., et al., 2002. The Re-Os Dating Using Modified Alkali Fusion Method. Rock and Mineral Analysis, 21(2): 100-104(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2002.02.004
|
Du, A. D., Zhao, D. M., Gao, H. T., et al., 1998. A Study on Re-Os Chemical Separation Method for NTIMS. Journal of Chinese Mass Spectrometry Society, 19(3): 11-18(in Chinese with English abstract).
|
Faris, J. P., 1960. Adsorption of Elements from Hydrofluoric Acid by Anion Exchange. Analytical Chemistry, 32(4): 520-522. https://doi.org/10.1021/ac60160a019
|
Fleische, M., 1965. Geochemistry Mineralogy and Genetic Types of Deposits of Rare Elements. I. Geochemistry of Rare Elements. 2. Minleralogy of Rare Elements. American Mineralogist, 50 (5-6): 819.
|
Gannoun, A., Burton, K. W., Parkinson, I. J., et al., 2007. The Scale and Origin of the Osmium Isotope Variations in Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 259(3-4): 541-556. https://doi.org/10.1016/j.epsl.2007.05.014
|
Gao, B. Y., Li, W. J., Chu, Z. Y., et al., 2022. An Improved Solvent Extraction Procedure for Re Isotopic Measurements. Microchemical Journal, 180: 107568. https://doi.org/10.1016/j.microc.2022.107568
|
Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012. Heterogeneous Os Isotope Compositions in the Kalatongke Sulfide Deposit, NW China: The Role of Crustal Contamination. Mineralium Deposita, 47(7): 731-738. https://doi.org/10.1007/s00126-012-0414-7
|
Gordon, C. L., Schlecht, W. G., Wichers, E., 1944. Use of Sealed Tubes for the Preparation of Acid Solutions of Samples for Analysis, or for Small-Scale Refining: Pressures of Acids Heated above 100 Degrees C. Journal of Research of the National Bureau of Standards, 33(6): 457. https://doi.org/10.6028/jres.033.027
|
Gou, T. Z., Zhong, H., Qi, L., et al., 2009. Study on Extraction of Rhenium with Isoamylol and Its Application in Geological Samples. Journal of Instrumental Analysis, 28(9): 1027-1030(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4957.2009.09.008
|
Gramlich, J. W., Murphy, T. J., Garner, E. L., et al., 1973. Absolute Isotopic Abundance Ratio and Atomic Weight of a Reference Sample of Rhenium. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 77A(6): 691. https://doi.org/10.6028/jres.077a.040
|
He, H. L., Du, A. D., Zou, X. Q., et al., 1993. A Study on Rhenium-Osmium Isotope Systematics by Using Inductively Coupled Plasma Mass Spectrometry and Its Application to Molybdenite Dating. Rock and Mineral Analysis, 12(3): 161-165(in Chinese with English abstract).
|
He, H. L., Du, A. D., Zou, X. Q., et al., 1994. Chemical Behavior of Osmium in the Rhenium-Osmium Geochronometry. Chinese Journal of Analytieal Chemistry, 22(2): 109-114(in Chinese with English abstract).
|
Hnatyshin, D., Creaser, R. A., Meffre, S., et al., 2020. Understanding the Microscale Spatial Distribution and Mineralogical Residency of Re in Pyrite: Examples from Carbonate-Hosted Zn-Pb Ores and Implications for Pyrite Re-Os Geochronology. Chemical Geology, 533: 119427. https://doi.org/10.1016/j.chemgeo.2019.119427
|
Hnatyshin, D., Creaser, R. A., Wilkinson, J. J., et al., 2015. Re-Os Dating of Pyrite Confirms an Early Diagenetic Onset and Extended Duration of Mineralization in the Irish Zn-Pb Ore Field. Geology, 43(2): 143-146. https://doi.org/10.1130/g36296.1
|
Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., et al., 2019. First In Situ Re-Os Dating of Molybdenite by LA-ICP-MS/MS. Mineralium Deposita, 54(6): 821-828. https://doi.org/10.1007/s00126-019-00889-1
|
Huang, S. Q., Song, Y. C., Zhou, L. M., et al., 2021a. Influence of Organic Matter on Re-Os Dating of Sulfides: Insights from the Giant Jinding Sediment-Hosted Zn-Pb Deposit, China. Economic Geology. https://doi.org/10.5382/econgeo.4881
|
Huang, X. W., Qi, L., Gao, J. F., et al., 2021b. Re-Os Dating of Molybdenite via Improved Alkaline Fusion. Journal of Analytical Atomic Spectrometry, 36(1): 64-69. https://doi.org/10.1039/d0ja00371a
|
Huang, X. W., Qi, L., Gao, J. F., et al., 2016. Some Thoughts on Sulfide Re-Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440, 400(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.03.004
|
Huang, X. W., Zhou, M. F., Qi, L., et al., 2013. Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-Hydrothermal Fe Deposit, NW China. Mineralium Deposita, 48(8): 925-946. https://doi.org/10.1007/s00126-013-0467-2
|
Lang, X. H., Tang, J. X., Chen, Y. C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No. I. Earth Science, 37(3): 515-525(in Chinese with English abstract).
|
Li, C., Qu, W. J., Zhou, L. M., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2010.01.004
|
Li, J., Zhong, L. F., Xu, J. F., et al., 2009. A BPHA Extraction Method for Chemical Separation of Re for Molybdenite Re-Os Dating. Geochimica, 38(6): 558-564(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.06.005
|
Li, W. J., Jin, X. D., Gao, B. Y., et al., 2022. Chalcopyrite from the Xiaotongchang Cu Deposit: A New Sulfide Reference Material for Low-Level Re-Os Geochronology. Geostandards and Geoanalytical Research, 46(2): 321-332. https://doi.org/10.1111/ggr.12420
|
Li, Y., Selby, D., Li, X. H., et al., 2018. Multisourced Metals Enriched by Magmatic-Hydrothermal Fluids in Stratabound Deposits of the Middle-Lower Yangtze River Metallogenic Belt, China. Geology, 46(5): 391-394. https://doi.org/10.1130/g39995.1
|
Liu, B. A., Sun, P. H., Wu, Q. H., et al., 2022. Timing and Origin of Orogenic Gold Mineralization in the Kanggurtag Area, NW China. Ore Geology Reviews, 149: 105080. https://doi.org/10.1016/j.oregeorev.2022.105080
|
Liu, R., Hu, L., Humayun, M., 2017. Natural Variations in the Rhenium Isotopic Composition of Meteorites. Meteoritics & Planetary Science, 52(3): 479-492. https://doi.org/10.1111/maps.12803
|
Liu, Y. C., Song, Y. C., Fard, M., et al., 2019. Pyrite Re-Os Age Constraints on the Irankuh Zn-Pb Deposit, Iran, and Regional Implications. Ore Geology Reviews, 104: 148-159. https://doi.org/10.1016/j.oregeorev.2018.11.002
|
Luck, J. M., Allègre, C. J., 1982. The Study of Molybdenites through the 187 Chronometer. Earth and Planetary Science Letters, 61(2): 291-296. https://doi.org/10.1016/0012-821x(82)90060-7
|
Lyu, C., Gao, J. F., Qi, L., et al., 2020. Re-Os Isotope System of Sulfide from the Fule Carbonate-Hosted Pb-Zn Deposit, SW China: Implications for Re-Os Dating of Pb-Zn Mineralization. Ore Geology Reviews, 121: 103558. https://doi.org/10.1016/j.oregeorev.2020.103558
|
Malinovsky, D., Rodushkin, I., Baxter, D., et al., 2002. Simplified Method for the Re-Os Dating of Molybdenite Using Acid Digestion and Isotope Dilution ICP-MS. Analytica Chimica Acta, 463(1): 111-124. https://doi.org/10.1016/s0003-2670(02)00372-0
|
Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
|
Markey, R., Stein, H., Morgan, J., 1998. Highly Precise Re-Os Dating for Molybdenite Using Alkaline Fusion and NTIMS. Talanta, 45(5): 935-946. https://doi.org/10.1016/s0039-9140(97)00198-7
|
Miller, C. A., Peucker-Ehrenbrink, B., Ball, L., 2009. Precise Determination of Rhenium Isotope Composition by Multi-Collector Inductively-Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 24(8): 1069-1078. https://doi.org/10.1039/b818631f
|
Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D., et al., 2011. Re-Assessing the Surface Cycling of Molybdenum and Rhenium. Geochimica et Cosmochimica Acta, 75(22): 7146-7179. https://doi.org/10.1016/j.gca.2011.09.005
|
Miller, C. A., Peucker-Ehrenbrink, B., Schauble, E. A., 2015. Theoretical Modeling of Rhenium Isotope Fractionation, Natural Variations across a Black Shale Weathering Profile, and Potential as a Paleoredox Proxy. Earth and Planetary Science Letters, 430: 339-348. https://doi.org/10.1016/j.epsl.2015.08.008
|
Morelli, R. M., Bell, C. C., Creaser, R. A., et al., 2010. Constraints on the Genesis of Gold Mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from Rhenium-Osmium Sulfide Geochronology. Mineralium Deposita, 45(5): 461-480. https://doi.org/10.1007/s00126-010-0284-9
|
Morgan, J. W., Walker, R. J., 1989. Isotopic Determinations of Rhenium and Osmium in Meteorites by Using Fusion, Distillation and Ion-Exchange Separations. Analytica Chimica Acta, 222(1): 291-300. https://doi.org/10.1016/s0003-2670(00)81904-2
|
Mountain, B. W., Wood, S. A., 1988. Solubility and Transport of Platinum-Group Elements in Hydrothermal Solutions: Thermodynamic and Physical Chemical Constraints. In: Prichard, H. M., Potts, P. J., Bowles, J. F. W., eds., Geo-Platinum 87. Springer, Dordrecht, 57-82.
|
Nagler, T. F., Frei, R., 1997. "Plug in" Os Distillation. Schweiz Mineral Petrogr Mitt, 77: 123 -127.
|
Pierotti, G, Mathur, R, Smith, R. C., et al., 2006. Re-Os Molybdenite Ages for the Antietam Reservoir, Eastern Pennsylvania, a Story of Open System Behavior Re-Os Isotopes in Molybdenite. Abstracts with Programs-Geological Society of America. Northeastern Section Annual Meeting. U. S. A., 24.
|
Puchtel, I. S., Humayun, M., Walker, R. J., 2007. Os-Pb-Nd Isotope and Highly Siderophile and Lithophile Trace Element Systematics of Komatiitic Rocks from the Volotsk Suite, SE Baltic Shield. Precambrian Research, 158(1-2): 119-137. https://doi.org/10.1016/j.precamres.2007.04.004
|
Qi, L. A., Gao, J. F., Zhou, M. F., et al., 2013. The Design of Re-Usable Carius Tubes for the Determination of Rhenium, Osmium and Platinum-Group Elements in Geological Samples. Geostandards and Geoanalytical Research, 37(3): 345-351. https://doi.org/10.1111/j.1751-908x.2012.00211.x
|
Qi, L., Zhou, M. F., Gao, J. F., et al., 2010. An Improved Carius Tube Technique for Determination of Low Concentrations of Re and Os in Pyrites. Journal of Analytical Atomic Spectrometry, 25(4): 585-589. https://doi.org/10.1039/B919016C
|
Qi, L., Zhou, M. F., Yan, Z. F., et al., 2006. An Improved Carius Tube Technique for Digesting Geological Samples in the Determination of PGEs and Re by ICP-MS. Geochimica, 35(6): 667-674(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2006.06.013
|
Qu, W. J., Chen, J. F., Du, A. D., et al., 2012. Re-Os Dating: Constraints on Mineralization Age of Magmatic Cu-Ni Sulfide Ore Deposit. Mineral Deposits, 31(1): 151-160(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.013
|
Ren, Y. S., Wang, H., Qu, W. J., et al., 2011. Re-Os Isotopic Dating of Molybdenite from Xiaoxi'nancha Copper-Gold Deposit in the Yanbian Area and Its Geological Significance. Earth Science, 36(4): 721-728(in Chinese with English abstract).
|
Reisberg, L., Meisel, T., 2002. The Re-Os Isotopic System: A Review of Analytical Techniques. Geostandards and Geoanalytical Research, 26(3): 249-267. https://doi.org/10.1111/j.1751-908x.2002.tb00633.x
|
Selby, D., Creaser, R. A., 2001. Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology, 96(1): 197-204. https://doi.org/10.2113/gsecongeo.96.1.197
|
Shi, K. T., Wang, K. Y., Ulrich, T., et al., 2021. Two Mineralization Events in the Laozuoshan Au Deposit, North-East China: Evidence from Re-Os Geochronology and Trace Element Geochemistry. Geological Journal, 56(4): 1974-1986. https://doi.org/10.1002/gj.4036
|
Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 67(13): 2136-2141. https://doi.org/10.1021/ac00109a036
|
Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099-1102. https://doi.org/10.1126/science.271.5252.1099
|
Spry, P. G., Mathur, R. D., Bonsall, T. A., et al., 2014. Re-Os Isotope Evidence for Mixed Source Components in Carbonate-Replacement Pb-Zn-Ag Deposits in the Lavrion District, Attica, Greece. Mineralogy and Petrology, 108(4): 503-513. https://doi.org/10.1007/s00710-013-0314-2
|
Stein, H. J., 2000. Re-Os Dating of Low-Level Highly Radiogenic (LLHR) Sulfides: The Harnas Gold Deposit, Southwest Sweden, Records Continental-Scale Tectonic Events. Economic Geology, 95(8): 1657-1671. https://doi.org/10.2113/95.8.1657
|
Stein, H. J., Markey, R. J., Morgan, J. W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479-486. https://doi.org/10.1046/j.1365-3121.2001.00395.x
|
Stein, H. J., Scherstén, A., Hannah, J., et al., 2003. Subgrain-Scale Decoupling of Re and 187Os and Assessment of Laser Ablation ICP-MS Spot Dating in Molybdenite. Geochimica et Cosmochimica Acta, 67(19): 3673-3686. https://doi.org/10.1016/s0016-7037(03)00269-2
|
Sun, Y. G., Li, B. L., Ding, Q. F., et al., 2020. Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing'an Range, Northeast China: Evidence from Fluid Inclusions, H-O-S-Pb Isotopes, and Re-Os Geochronology. Minerals, 10(7): 591. https://doi.org/10.3390/min10070591
|
Sun, Y. L., Zhou, M. F., Sun, M., 2001. Routine Os Analysis by Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry: OsO4 in Water Solution Gives High Sensitivity. Journal of Analytical Atomic Spectrometry, 16(4): 345-349. https://doi.org/10.1039/b008533m
|
Suzuki, K., Shimizu, H., Masuda, A., 1996. ReOs Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 60(16): 3151-3159. https://doi.org/10.1016/0016-7037(96)00164-0
|
Takahashi, Y., Uruga, T., Suzuki, K., et al., 2007. An Atomic Level Study of Rhenium and Radiogenic Osmium in Molybdenite. Geochimica et Cosmochimica Acta, 71(21): 5180-5190. https://doi.org/10.1016/j.gca.2007.08.007
|
Veselovský, F., Ackerman, L., Pašava, J., et al., 2018. Multiphase Formation of the Obří Důl Polymetallic Skarn Deposit, West Sudetes, Bohemian Massif: Geochemistry and Re-Os Dating of Sulfide Mineralization. Mineralium Deposita, 53(5): 665-682. https://doi.org/10.1007/s00126-017-0766-0
|
Völkening, J., Walczyk, T., Heumann, K. G., 1991. Osmium Isotope Ratio Determinations by Negative Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2): 147-159. https://doi.org/10.1016/0168-1176(91)80077-z
|
Walker, R. J., 1988. Low-Blank Chemical Separation of Rhenium and Osmium from Gram Quantities of Silicate Rock for Measurement by Resonance Ionization Mass Spectrometry. Analytical Chemistry, 60(11): 1231-1234. https://doi.org/10.1021/ac00162a026
|
Walker, R. J., Fassett, J. D., 1986. Isotopic Measurement of Subananogram Quantities of Rhenium and Osmium by Resonance Ionization Mass Spectrometry. Analytical Chemistry, 58(14): 2923-2927. https://doi.org/10.1021/ac00127a007
|
Walker, R. J., Morgan, J. W., Horan, M. F., et al., 1994. Re-Os Isotopic Evidence for an Enriched-Mantle Source for the Noril'sk-Type, Ore-Bearing Intrusions, Siberia. Geochimica et Cosmochimica Acta, 58(19): 4179-4197. https://doi.org/10.1016/0016-7037(94)90272-0
|
Walker, R. J., Morgan, J. W., Naldrett, A. J., et al., 1991. Re-Os Isotope Systematics of Ni-Cu Sulfide Ores, Sudbury Igneous Complex, Ontario: Evidence for a Major Crustal Component. Earth and Planetary Science Letters, 105(4): 416-429. https://doi.org/10.1016/0012-821x(91)90182-h
|
Wang, G. Q., Sun, T. T., Xu, J. F., 2017. A Comparison Using Faraday Cups with 1013 Ω Amplifiers and a Secondary Electron Multiplier to Measure Os Isotopes by Negative Thermal Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 31 (19): 1616-1622. https://doi.org/10.1002/rcm.7943
|
Wang, G. Q., Vollstaedt, H., Xu, J. F., et al., 2019. High-Precision Measurement of 187Os/188Os Isotope Ratios of Nanogram to Picogram Amounts of Os in Geological Samples by N-TIMS Using Faraday Cups Equipped with 1013 Ω Amplifiers. Geostandards and Geoanalytical Research, 43(3): 419-433. https://doi.org/10.1111/ggr.12269
|
Wang, K. X., Zhai, D. G., Zhang, L. L., et al., 2022a. Calcite U-Pb, Pyrite Re-Os Geochronological and Fluid Inclusion and H-O Isotope Studies of the Dafang Gold Deposit, South China. Ore Geology Reviews, 150: 105183. https://doi.org/10.1016/j.oregeorev.2022.105183
|
Wang, L., Zheng, Y. C., Hou, Z. Q., et al., 2022b. The Subduction-Related Saindak Porphyry Cu-Au Deposit Formed by Remelting of a Thickened Juvenile Lower Crust underneath the Chagai Belt, Pakistan. Ore Geology Reviews, 149: 105062. https://doi.org/10.1016/j.oregeorev.2022.105062
|
Wang, X. L., Liu, Y. N., Xiong, Z. H., 1995. Study on the Extraction of Rhenium with Ketones. Chemical Reagents, 17(3): 143-145(in Chinese with English abstract).
|
Xiong, Y. L., Wood, S. A., 1999. Experimental Determination of the Solubility of ReO2 and the Dominant Oxidation State of Rhenium in Hydrothermal Solutions. Chemical Geology, 158(3-4): 245-256. https://doi.org/10.1016/s0009-2541(99)00050-9
|
Yang, M. Z., 1983. New Genetic Types of Rhenium-Bearing Deposits and Their Geological Prospecting Direction. Geology-Geochemistry, 11(1): 13-14(in Chinese).
|
Yang, M. Z., Hou, K., Lu, J. P., et al., 2012. Chronology of Molybdenum-Lead-Zinc Polymetallic Deposit of Suo Naga, Dong Ujimqin Banner Region. Earth Science, 37(6): 1327-1337(in Chinese with English abstract).
|
Yang, S. H., Zhou, M. F., Lightfoot, P. C., et al., 2014. Re-Os Isotope and Platinum-Group Element Geochemistry of the Pobei Ni-Cu Sulfide-Bearing Mafic-Ultramafic Complex in the Northeastern Part of the Tarim Craton. Mineralium Deposita, 49(3): 381-397. https://doi.org/10.1007/s00126-013-0496-x
|
Yang, Z., Jiang, H., Yang, M. G., et al., 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356(in Chinese with English abstract).
|
Zhai, D. G., Williams-Jones, A., Liu, J. J., et al., 2019. Evaluating the Use of the Molybdenite Re-Os Chronometer in Dating Gold Mineralization: Evidence from the Haigou Deposit, Northeastern China. Economic Geology, 114 (5): 897-915. https://doi.org/10.5382/econgeo.2019.4667
|
Zhao, X. B., Xue, C., Zu, B., et al., 2022. Geology and Genesis of the Unkurtash Intrusion-Related Gold Deposit, Tien Shan, Kyrgyzstan. Economic Geology. https://doi.org/10.5382/econgeo.4918
|
Zhi, X. C., 1999. Re-Os Isotope System and Dating of Continental Lithospheric Mantle. Chinese Science Bulletin, 44(22): 2362-2371(in Chinese). doi: 10.1360/csb1999-44-22-2362
|
Zhou, L. M., Gao, B. Y., Wang, L. B., et al., 2012. Improvements on the Separation Method of Osmium by Direct Distillation in Carius Tube. Rock and Mineral Analysis, 31(3): 413-418(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2012.03.005
|
Zimmerman, A., Yang, G., Stein, H., et al., 2021. Addressing Molybdenite 187Re Parent-187Os Daughter Intra-Crystalline Decoupling in Light of Recent In-Situ Micro-Scale Observations. Research Square. https://doi.org/10.21203/rs.3.rs-778623/v1
|
陈懋弘, 毛景文, 屈文俊, 等, 2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义. 地质论评, 53(3): 371-382. doi: 10.3321/j.issn:0371-5736.2007.03.010
|
杜安道, 何红蓼, 殷宁万, 等, 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347.
|
杜安道, 屈文俊, 李超, 等, 2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019
|
杜安道, 孙德忠, 王淑贤, 等, 2002. 铼-锇定年法中碱熔分解样品方法的改进. 岩矿测试, 21(2): 100-104.
|
杜安道, 赵敦敏, 高洪涛, 等, 1998. 负离子热表面电离质谱测定中的铼、锇同位素试样化学分离方法研究. 质谱学报, 19(3): 11-18.
|
苟体忠, 钟宏, 漆亮, 等, 2009. 地质样品中痕量铼的异戊醇萃取研究. 分析测试学报, 28(9): 1027-1030.
|
何红蓼, 杜安道, 邹晓秋, 等, 1993. 铼-锇同位素的等离子体质谱法测定及其在辉钼矿测年中的应用. 岩矿测试, 12(3): 161-165.
|
何红蓼, 杜安道, 邹晓秋, 等, 1994. 铼-锇测年法中锇的化学行为的研究. 分析化学, 22(2): 109-114.
|
黄小文, 漆亮, 高剑峰, 等, 2016. 关于硫化物Re-Os同位素定年的一些思考. 矿物岩石地球化学通报, 35(3): 432-440, 400. doi: 10.3969/j.issn.1007-2802.2016.03.004
|
郎兴海, 唐菊兴, 陈毓川, 等, 2012. 西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用: 来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据. 地球科学, 37(3): 515-525. doi: 10.3799/dqkx.2012.058
|
李超, 屈文俊, 周利敏, 等, 2010. Carius管直接蒸馏快速分离锇方法研究. 岩矿测试, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004
|
李杰, 钟立峰, 许继峰, 等, 2009. 一种简单的辉钼矿Re-Os同位素年龄测定中Re化学分离方法: "钽试剂"萃取法. 地球化学, 38(6): 558-564.
|
毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005
|
漆亮, 周美夫, 严再飞, 等, 2006. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量. 地球化学, 35(6): 667-674.
|
屈文俊, 陈江峰, 杜安道, 等, 2012. Re-Os同位素定年对岩浆型Cu-Ni硫化物矿床成矿时代的制约. 矿床地质, 31(1): 151-160.
|
任云生, 王辉, 屈文俊, 等, 2011. 延边小西南岔铜金矿床辉钼矿Re-Os同位素测年及其地质意义. 地球科学, 36(4): 721-728. doi: 10.3799/dqkx.2011.072
|
汪小琳, 刘亦农, 熊宗华, 1995. 酮类试剂萃取分离铼的研究. 化学试剂, 17(3): 143-145.
|
杨梅珍, 侯坤, 陆建培, 等, 2012. 东乌珠穆沁旗索纳嘎钼铅锌多金属矿床成岩成矿年代学. 地球科学, 37(6): 1327-1337. doi: 10.3799/dqkx.2012.140
|
杨敏之, 1983. 含铼矿床的新成因类型及其地质找矿方向. 地质地球化学, 11(1): 13-14.
|
杨震, 姜华, 杨明国, 等, 2017. 冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地球科学, 42(3): 339-356. doi: 10.3799/dqkx.2017.026
|
支霞臣, 1999. Re-Os同位素体系和大陆岩石圈地幔定年. 科学通报, 44(22): 2362-2371. doi: 10.3321/j.issn:0023-074X.1999.22.002
|
周利敏, 高炳宇, 王礼兵, 等, 2012. Carius管直接蒸馏快速分离锇方法的改进. 岩矿测试, 31(3): 413-418.
|