• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Wang Xiaorui, Liu Xu, Zhang Xin, Zhang Junran, 2023. Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel. Earth Science, 48(6): 2415-2426. doi: 10.3799/dqkx.2023.063
    Citation: Wang Xiaorui, Liu Xu, Zhang Xin, Zhang Junran, 2023. Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel. Earth Science, 48(6): 2415-2426. doi: 10.3799/dqkx.2023.063

    Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel

    doi: 10.3799/dqkx.2023.063
    • Received Date: 2022-12-06
    • Publish Date: 2023-06-25
    • The response of the powdered sandy soil to the cyclic load in the operation of the metro in small curves is sensitive, especially the centrifugal force on the track when the train is moving particularly serious, and most areas in Zhengzhou belong to the Yellow River alluvial powdered sand layer, so the metro in long-term operation, due to the dynamic response of the powdered sandy soil layer caused by the settlement of the sandy soil layer, to train operation will bring greater potential problems.In this paper, long-term pore water monitoring was carried out, and the MIDAS finite element calculation platform was used to establish a coupled dynamic model of the metro bed-lining-soil for mutual verification, and the vibration response law of the soil around the tunnel was studied for single train operation and two-way meeting, and for different tunnel burial depths. The results show that the pore water pressure is large in the early stage of train operation, and gradually decreases in the later stage and becomes stable. Due to the influence of peak work hours, seasonal climate, and groundwater level, the pore pressure may cause a small increase, but the overall trend is to decline.the simultaneous passage of two-way trains will cause the pore water pressure to increase more than in the case of one-way train operation due to the load superposition effect, the maximum settlement below the tunnel occurs at the left end of the tunnel, the further away from the tunnel the smaller the settlement; at a certain water table, the tunnel burial depth is positively proportional to the pore water pressure magnitude, and inversely proportional to the settlement of the soil around the tunnel.

       

    • loading
    • Karakan, E., Sezer, A., Tanrinian, N., 2019. Evaluation of Effect of Limited Pore Water Pressure Development on Cyclic Behavior of a Nonplastic Silt. Soils and Foundations, 59(5): 1302-1312. https://doi.org/10.1016/j.sandf.2019.05.009
      Ge, S. P., Yao, X. J., 2015. Response Characteristics of Pore Pressure in Soils nearby Metro Tunnel Due to Train Vibration Loading. Journal of Engineering Geology, 23(6): 1093-1099(in Chinese with English abstract).
      Li, Z. H., 2022. Study on Cumulative Deformation of Calcareous Sand under Cyclic Load. Guangdong University of Technology, Guangzhou(in Chinese with English abstract).
      Ma, K. W., 2020. Analysis of Subway Train Vibration Response in Sand Stratum (Dissertation). Shijiazhuang Tiedao University, Shijiazhuang(in Chinese with English abstract).
      Ren, L., Zhu, Y., Cui, T. L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286(in Chinese with English abstract).
      Wang, C. Y., Zhao, J. Z., Xu, X., et al., 2018. Three-Dimensional Finite Element Analysis of Wheel-Rail Contact for Curved Subway. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 31(2): 36-42(in Chinese with English abstract).
      Wang, L. H., Lu, G. Y., 2013. Vehicle Type Selection for Zhengzhou Metro Line 1. Urban Rapid Rail Transit, 26(3): 119-123(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6073.2013.03.030
      Wang, M. F., 2009. Dynamic Response of Saturated Silt Soil and Liquefaction by the Subway's Vibration (Dissertation). Beijing Jiaotong University, Beijing(in Chinese with English abstract).
      Wang, T., Shi, B., Ma, L. X., et al., 2020. Dynamic Response and Long-Term Cumulative Deformation of Silty Sand Stratum Induced by Metro Train Vibration Loads. Journal of Engineering Geology, 28(6): 1378-1385(in Chinese with English abstract).
      Wang, X. R., Cai, S., Yang, W., et al., 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491(in Chinese with English abstract).
      Wang, X. R., Jiang, H. J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract).
      Wang, Y. G., 2020. Study on Dynamic Response and Long-Term Settlement of Curved Tunnel under VibrationLoad of Train in Silty Strata (Dissertation). Henan University of Technology, Zhengzhou(in Chinese with English abstract).
      Yang, W. B., Li, L. G., Shang, Y. C., et al., 2018. An Experimental Study of the Dynamic Response of Shield Tunnels under Long-Term Train Loads. Tunnelling and Underground Space Technology, 79: 67-75. https://doi.org/10.1016/j.tust.2018.04.031
      Yuan, Y., Liu, W. N., Liu, W. F., 2012. Propagation Law of Ground Vibration in the Curve Section of Metro Based on In-Situ Measurement. China Railway Science, 33(4): 133-138(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4632.2012.04.21
      Zhang, X., Tang, Y. Q., Zhou, N. Q., et al., 2007. Dynamic Response of Saturated Soft Clay around a Subway Tunnel under Vibration Load. China Civil Engineering Journal, 40(2): 85-88(in Chinese with English abstract). doi: 10.3321/j.issn:1000-131X.2007.02.015
      Zhou, J., Lu, D. Y., 2020. Liquifiable Sandy Settlement Characteristics Analysis under Metro Train Vibration Load. China Civil Engineering Journal, 53(Suppl. 1): 226-232(in Chinese with English abstract).
      Zhou, N. Q., Tang, Y. Q., Wang, J. X., et al., 2006. Response Characteristics of Pore Pressure in Saturated Soft Clay to the Metro Vibration Loading. Chinese Journal of Geotechnical Engineering, 28(12): 2149-2152(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2006.12.019
      Zhou, Y., Yang, W. B., Yang, L. L., et al., 2022. Analysis of Dynamic Response Characteristics of Shield Tunnels in Water-Rich Soft Strata under Train Loads. Chinese Journal of Rock Mechanics and Engineering, 41(5): 1067-1080(in Chinese with English abstract).
      葛世平, 姚湘静, 2015. 地铁振动荷载下隧道周边土体孔压响应特征研究. 工程地质学报, 23(6): 1093-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506010.htm
      李子豪, 2022. 循环荷载作用下钙质砂的累积变形规律研究(硕士学位论文). 广州: 广东工业大学.
      马伟凯, 2020. 砂土地层地铁列车振动响应分析(硕士学位论文). 石家庄: 石家庄铁道大学.
      任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
      王晨阳, 赵吉中, 徐祥, 等, 2018. 地铁曲线段轮轨接触三维有限元分析. 四川理工学院学报(自然科学版), 31(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCQX201802006.htm
      王丽红, 卢桂云, 2013. 郑州地铁1号线车辆选型. 都市快轨交通, 26(3): 119-123. doi: 10.3969/j.issn.1672-6073.2013.03.030
      王明飞, 2009. 地铁列车振动引起饱和粉土地基动力响应及液化(硕士学位论文). 北京: 北京交通大学.
      王涛, 施斌, 马龙祥, 等, 2020. 粉细砂地层对地铁列车荷载的动力响应及长期变形研究. 工程地质学报, 28(6): 1378-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006024.htm
      王晓睿, 蔡松, 杨伟, 等, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326
      王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      王永刚, 2020. 粉砂地层中列车振动荷载下曲线隧道的动力响应及长期沉降研究(硕士学位论文). 郑州: 河南工业大学.
      袁扬, 刘维宁, 刘卫丰, 2012. 基于现场测试的曲线段地铁地面振动传播规律. 中国铁道科学, 33(4): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201204025.htm
      张曦, 唐益群, 周念清, 等, 2007. 地铁振动荷载作用下隧道周围饱和软黏土动力响应研究. 土木工程学报, 40(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200702016.htm
      周军, 卢岱岳, 2020. 可液化砂土地铁列车振动作用下沉降特性分析. 土木工程学报, 53(增刊1): 226-232. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1036.htm
      周念清, 唐益群, 王建秀, 等, 2006. 饱和粘性土体中孔隙水压力对地铁振动荷载响应特征分析. 岩土工程学报, 28(12): 2149-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200612018.htm
      周扬, 杨文波, 杨林霖, 等, 2022. 车致振动荷载作用下富水软弱地层中盾构隧道动力响应分析. 岩石力学与工程学报, 41(5): 1067-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (408) PDF downloads(51) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return