Citation: | Wang Lifang, Liu Xiaoli, Xu Kun, Du Linze, Xu Zhanghao, Zhang Baoyi, 2024. Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069 |
Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi.org/10.1016/j.jappgeo.2012.05.003
|
Bistacchi, A., Massironi, M., Dal Piaz, G. V., et al., 2008. 3D Fold and Fault Reconstruction with an Uncertainty Model: An Example from an Alpine Tunnel Case Study. Computers & Geosciences, 34(4): 351-372. https://doi.org/10.1016/j.cageo.2007.04.002
|
Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
|
Carlin, C. B. P., 1996. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. Journal of the American Statistical Association, 91(434): 883-904. https://doi.org/10.1080/01621459.1996.10476956
|
Daniel, S., Philipp, B., Christoph, B., 2017. Uncertainty Assessment in 3-D Geological Models of Increasing Complexity. Solid Earth, 8(2): 515-530. https://doi.org/10.5194/se-8-515-2017
|
de la Varga, M., Wellmann, J. F., 2016. Structural Geologic Modeling as an Inference Problem: A Bayesian Perspective. Interpretation, 4(3): SM1-SM16. https://doi.org/10.1190/int-2015-0188.1
|
de la Varga, M., Schaaf, A., Wellmann, F., 2019. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development, 12(1): 1-32. https://doi.org/10.5194/gmd-12-1-2019
|
Fan, J. C., Mao, X. C., Zou, P. J., et al., 2012. Integration Method for Metallogenic Information under Condition of Metallogenic Information Asymmetry. Transactions of Nonferrous Metals Society of China, 22(3): 940-947(in Chinese with English abstract).
|
González-Garcia, J., Jessell, M., 2016. A 3D Geological Model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of Geological Uncertainty Using a Stochastic Approach Based on Bézier Curve Design. Tectonophysics, 687: 139-157. https://doi.org/10.1016/j.tecto. 2016. 09.011 doi: 10.1016/j.tecto.2016.09.011
|
Grose, L., Laurent, G., Aillères, L., et al., 2018. Inversion of Structural Geology Data for Fold Geometry. Journal of Geophysical Research: Solid Earth, 123(8): 6318-6333. https://doi.org/10.1029/2017jb015177
|
Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University. Natural Science, 40(9): 1337-1342(in Chinese with English abstract).
|
Hassen, I., Gibson, H., Hamzaoui-Azaza, F., et al., 2016. 3D Geological Modeling of the Kasserine Aquifer System, Central Tunisia: New Insights into Aquifer-Geometry and Interconnections for a Better Assessment of Groundwater Resources. Journal of Hydrology, 539(W0542): 223-236. https://doi.org/10.1016/j.jhydrol.2016.05.034
|
Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., et al., 2014. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Mathematical Geosciences, 46(8): 931-953. https://doi.org/10.1007/s11004-014-9540-3
|
Hou, W. S., Liu, H. G., Zheng, T. C., et al., 2021. Hierarchical MPS-Based Three-Dimensional Geological Structure Reconstruction with Two-Dimensional Image(S). Journal of Earth Science, 32(2): 455-467. https://doi.org/10.1007/s12583-021-1443-x
|
Joly, A., Porwal, A., McCuaig, T. C., 2012. Exploration Targeting for Orogenic Gold Deposits in the Granites-Tanami Orogen: Mineral System Analysis, Targeting Model and Prospectivity Analysis. Ore Geology Reviews, 48(1-2): 349-383. https://doi.org/10.1016/j.oregeorev.2012.05.004
|
Krajnovich, A., Zhou, W., Gutierrez, M., 2020. Uncertainty Assessment for 3D Geologic Modeling of Fault Zones Based on Geologic Inputs and Prior Knowledge. Solid Earth, 11(4): 1457-1474. https://doi.org/10.5194/se-11-1457-2020
|
Lajaunie, C., Courrioux, G., Manuel, L., 1997. Foliation Fields and 3D Cartography in Geology: Principles of a Method Based on Potential Interpolation. Mathematical Geology, 29(4): 571-584. https://doi.org/10.1007/bf02775087
|
Lee, K., Jung, S., Choe, J., 2016. Ensemble Smoother with Clustered Covariance for 3D Channelized Reservoirs with Geological Uncertainty. Journal of Petroleum Science and Engineering, 145(3): 423-435. https://doi.org/10.1016/j.petrol.2016.05.029
|
Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7
|
Liang, D., Hua, W. H., Liu, X. G., et al., 2021. Uncertainty Assessment of a 3D Geological Model by Integrating Data Errors, Spatial Variations and Cognition Bias. Earth Science Informatics, 14(1): 161-178. https://doi.org/10.1007/s12145-020-00548-4
|
Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546-547: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007
|
Lindsay, M. D., Stéphane, P., Jessell, M. W., et al., 2013. Making the Link Between Geological and Geophysical Uncertainty: Geodiversity in the Ashanti Greenstone Belt. Geophysical Journal International, 195(2): 903-922. doi: 10.1093/gji/ggt311
|
Mallet, J. L., 2004. Space-Time Mathematical Framework for Sedimentary Geology. Mathematical Geology, 36(1): 1-32. https://doi.org/10.1023/b:matg.0000016228.75495.7c
|
Mao, X. C., Hu, C., Zhou, S. G., et al., 2011. Field Analysis of Metallogenic Information and its Application. Journal of Central South University of Technology, 18(1): 196-207. https://doi.org/10.1007/s11771-011-0680-z
|
Olierook, H. K. H., Scalzo, R., Kohn, D., et al., 2020. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12(1): 479-493. https://doi.org/10.1016/j.gsf.2020.04.015
|
Pirot, G., Joshi, R., Giraud, J., et al., 2022. LoopUI-0.1: Indicators to Support Needs and Practices in 3D Geological Modelling Uncertainty Quantification. Geoscientific Model Development, 15(12): 4689-4708. https://doi.org/10.5194/gmd-15-4689-2022
|
Shannon, C. E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27(4): 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
|
Wang, F. Y., Mao, X. C., Deng, H., et al., 2020. Manganese Potential Mapping in Western Guangxi-Southeastern Yunnan (China) Via Spatial Analysis and Modal-Adaptive Prospectivity Modeling. Transactions of Nonferrous Metals Society of China, 30(4): 1058-1070. https://doi.org/10.1016/s1003-6326(20)65277-3
|
Wellmann, J. F., Horowitz, F. G., Schill, E., et al., 2010. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion. Tectonophysics, 490(3/4): 141-151. https://doi.org/10.1016/j.tecto.2010.04.022
|
Wellmann, J. F., Regenauer-Lieb, K., 2012. Uncertainties Have a Meaning: Information Entropy as a Quality Measure for 3-D Geological Models. Tectonophysics, 526-529(6): 207-216. https://doi.org/10.1016/j.tecto.2011.05.001
|
Wellmann, J. F., Lindsay, M., Poh, J., Jessell, M., 2014. Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations. Energy Procedia, 59: 374-381. doi: 10.1016/j.egypro.2014.10.391
|
Zhang, B. Y., Yang, L., Chen, X. Y., et al., 2017. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections: A Case Study of Manganese Deposits in Southwestern Guangxi, China. Journal of Jilin University. Earth Science Edition, 47(3): 933-948(in Chinese with English abstract).
|
Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644(in Chinese with English abstract).
|
Zhao, M., Tang, H. M., Zhan, H. B., et al., 2022. A Numerical Method for Solving Three-Dimensional Probability Distribution of Rockmass Fracture Orientations. Journal of Jilin University. Earth Science Edition, 47(4): 1470-1482(in Chinese with English abstract).
|
樊俊昌, 毛先成, 邹品娟, 等, 2012. 信息不对称条件下的成矿信息集成方法. 中国有色金属学报, 22(3): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201203040.htm
|
郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报. 自然科学版, 40(9): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201909021.htm
|
张宝一, 杨莉, 陈笑扬, 等, 2017. 基于图切地质剖面的区域成矿地质体三维建模与资源评价——以桂西南地区锰矿为例. 吉林大学学报: 地球科学版, 47(3): 933-948. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703027.htm
|
张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
|
赵萌, 唐辉明, 詹红兵, 等, 2022. 求解岩体裂隙产状三维概率分布的数值方法. 地球科学, 47(4): 1470-1482. doi: 10.3799/dqkx.2021.056
|