• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Wang Lifang, Liu Xiaoli, Xu Kun, Du Linze, Xu Zhanghao, Zhang Baoyi, 2024. Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069
    Citation: Wang Lifang, Liu Xiaoli, Xu Kun, Du Linze, Xu Zhanghao, Zhang Baoyi, 2024. Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069

    Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion

    doi: 10.3799/dqkx.2023.069
    • Received Date: 2023-01-22
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • To fully utilize known knowledge to reduce uncertainty of three-dimensional (3D) geological model, a Bayesian-Markov chain Monte Carlo (Bayesian-MCMC) based 3D geological model inference framework is proposed to consider the uncertainty of modeling data (prior parameter) and integrate known knowledge or geophysical exploration data as likelihood function into the process of 3D geological implicit modeling by Cokriging interpolant, which well satisfies the known knowledge. Firstly, different prior distributions of modeling data and likelihood functions of known knowledge are built based on Bayesian probabilistic theory. Secondly, the posterior space of prior parameter (modeling data) can be explored by Markov chain Monte Carlo (MCMC) sampling method to obtain a large number of samples which simultaneously satisfy the prior distributions of modeling data and likelihood constraints of know knowledge. Thirdly, a series of 3D geological model realizations satisfying known knowledge can be constructed by Cokriging interpolant using above newly obtained samples of modeling data. Finally, compared with the deterministic 3D geological modeling methods, the Bayesian-MCMC probabilistic inference framework can obtain a series of model realizations to allowably apply information entropy to evaluate model uncertainty. Taking the Lingnian-Nacha area in the southwestern Guangxi Zhuang Autonomous Region (GZAR) of China as am example, the proposed Bayesian-MCMC probabilistic inference framework was used to optimize 3D geological model simultaneously considering location and attitude uncertainties of strata and fault and known knowledge of stratum thickness and attitudes of strata and fault. The results of case study show that the proposed method can not only reconstruct 3D spatial geometry of geological body but also reduce uncertainty of 3D geological model, which provides geologist with an effective way to integrate modeling data and known knowledge to reconstruct 3D geological model and reduce its uncertainty.

       

    • loading
    • Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi.org/10.1016/j.jappgeo.2012.05.003
      Bistacchi, A., Massironi, M., Dal Piaz, G. V., et al., 2008. 3D Fold and Fault Reconstruction with an Uncertainty Model: An Example from an Alpine Tunnel Case Study. Computers & Geosciences, 34(4): 351-372. https://doi.org/10.1016/j.cageo.2007.04.002
      Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
      Carlin, C. B. P., 1996. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. Journal of the American Statistical Association, 91(434): 883-904. https://doi.org/10.1080/01621459.1996.10476956
      Daniel, S., Philipp, B., Christoph, B., 2017. Uncertainty Assessment in 3-D Geological Models of Increasing Complexity. Solid Earth, 8(2): 515-530. https://doi.org/10.5194/se-8-515-2017
      de la Varga, M., Wellmann, J. F., 2016. Structural Geologic Modeling as an Inference Problem: A Bayesian Perspective. Interpretation, 4(3): SM1-SM16. https://doi.org/10.1190/int-2015-0188.1
      de la Varga, M., Schaaf, A., Wellmann, F., 2019. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development, 12(1): 1-32. https://doi.org/10.5194/gmd-12-1-2019
      Fan, J. C., Mao, X. C., Zou, P. J., et al., 2012. Integration Method for Metallogenic Information under Condition of Metallogenic Information Asymmetry. Transactions of Nonferrous Metals Society of China, 22(3): 940-947(in Chinese with English abstract).
      González-Garcia, J., Jessell, M., 2016. A 3D Geological Model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of Geological Uncertainty Using a Stochastic Approach Based on Bézier Curve Design. Tectonophysics, 687: 139-157. https://doi.org/10.1016/j.tecto. 2016. 09.011 doi: 10.1016/j.tecto.2016.09.011
      Grose, L., Laurent, G., Aillères, L., et al., 2018. Inversion of Structural Geology Data for Fold Geometry. Journal of Geophysical Research: Solid Earth, 123(8): 6318-6333. https://doi.org/10.1029/2017jb015177
      Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University. Natural Science, 40(9): 1337-1342(in Chinese with English abstract).
      Hassen, I., Gibson, H., Hamzaoui-Azaza, F., et al., 2016. 3D Geological Modeling of the Kasserine Aquifer System, Central Tunisia: New Insights into Aquifer-Geometry and Interconnections for a Better Assessment of Groundwater Resources. Journal of Hydrology, 539(W0542): 223-236. https://doi.org/10.1016/j.jhydrol.2016.05.034
      Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., et al., 2014. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Mathematical Geosciences, 46(8): 931-953. https://doi.org/10.1007/s11004-014-9540-3
      Hou, W. S., Liu, H. G., Zheng, T. C., et al., 2021. Hierarchical MPS-Based Three-Dimensional Geological Structure Reconstruction with Two-Dimensional Image(S). Journal of Earth Science, 32(2): 455-467. https://doi.org/10.1007/s12583-021-1443-x
      Joly, A., Porwal, A., McCuaig, T. C., 2012. Exploration Targeting for Orogenic Gold Deposits in the Granites-Tanami Orogen: Mineral System Analysis, Targeting Model and Prospectivity Analysis. Ore Geology Reviews, 48(1-2): 349-383. https://doi.org/10.1016/j.oregeorev.2012.05.004
      Krajnovich, A., Zhou, W., Gutierrez, M., 2020. Uncertainty Assessment for 3D Geologic Modeling of Fault Zones Based on Geologic Inputs and Prior Knowledge. Solid Earth, 11(4): 1457-1474. https://doi.org/10.5194/se-11-1457-2020
      Lajaunie, C., Courrioux, G., Manuel, L., 1997. Foliation Fields and 3D Cartography in Geology: Principles of a Method Based on Potential Interpolation. Mathematical Geology, 29(4): 571-584. https://doi.org/10.1007/bf02775087
      Lee, K., Jung, S., Choe, J., 2016. Ensemble Smoother with Clustered Covariance for 3D Channelized Reservoirs with Geological Uncertainty. Journal of Petroleum Science and Engineering, 145(3): 423-435. https://doi.org/10.1016/j.petrol.2016.05.029
      Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7
      Liang, D., Hua, W. H., Liu, X. G., et al., 2021. Uncertainty Assessment of a 3D Geological Model by Integrating Data Errors, Spatial Variations and Cognition Bias. Earth Science Informatics, 14(1): 161-178. https://doi.org/10.1007/s12145-020-00548-4
      Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546-547: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007
      Lindsay, M. D., Stéphane, P., Jessell, M. W., et al., 2013. Making the Link Between Geological and Geophysical Uncertainty: Geodiversity in the Ashanti Greenstone Belt. Geophysical Journal International, 195(2): 903-922. doi: 10.1093/gji/ggt311
      Mallet, J. L., 2004. Space-Time Mathematical Framework for Sedimentary Geology. Mathematical Geology, 36(1): 1-32. https://doi.org/10.1023/b:matg.0000016228.75495.7c
      Mao, X. C., Hu, C., Zhou, S. G., et al., 2011. Field Analysis of Metallogenic Information and its Application. Journal of Central South University of Technology, 18(1): 196-207. https://doi.org/10.1007/s11771-011-0680-z
      Olierook, H. K. H., Scalzo, R., Kohn, D., et al., 2020. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12(1): 479-493. https://doi.org/10.1016/j.gsf.2020.04.015
      Pirot, G., Joshi, R., Giraud, J., et al., 2022. LoopUI-0.1: Indicators to Support Needs and Practices in 3D Geological Modelling Uncertainty Quantification. Geoscientific Model Development, 15(12): 4689-4708. https://doi.org/10.5194/gmd-15-4689-2022
      Shannon, C. E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27(4): 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
      Wang, F. Y., Mao, X. C., Deng, H., et al., 2020. Manganese Potential Mapping in Western Guangxi-Southeastern Yunnan (China) Via Spatial Analysis and Modal-Adaptive Prospectivity Modeling. Transactions of Nonferrous Metals Society of China, 30(4): 1058-1070. https://doi.org/10.1016/s1003-6326(20)65277-3
      Wellmann, J. F., Horowitz, F. G., Schill, E., et al., 2010. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion. Tectonophysics, 490(3/4): 141-151. https://doi.org/10.1016/j.tecto.2010.04.022
      Wellmann, J. F., Regenauer-Lieb, K., 2012. Uncertainties Have a Meaning: Information Entropy as a Quality Measure for 3-D Geological Models. Tectonophysics, 526-529(6): 207-216. https://doi.org/10.1016/j.tecto.2011.05.001
      Wellmann, J. F., Lindsay, M., Poh, J., Jessell, M., 2014. Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations. Energy Procedia, 59: 374-381. doi: 10.1016/j.egypro.2014.10.391
      Zhang, B. Y., Yang, L., Chen, X. Y., et al., 2017. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections: A Case Study of Manganese Deposits in Southwestern Guangxi, China. Journal of Jilin University. Earth Science Edition, 47(3): 933-948(in Chinese with English abstract).
      Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644(in Chinese with English abstract).
      Zhao, M., Tang, H. M., Zhan, H. B., et al., 2022. A Numerical Method for Solving Three-Dimensional Probability Distribution of Rockmass Fracture Orientations. Journal of Jilin University. Earth Science Edition, 47(4): 1470-1482(in Chinese with English abstract).
      樊俊昌, 毛先成, 邹品娟, 等, 2012. 信息不对称条件下的成矿信息集成方法. 中国有色金属学报, 22(3): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201203040.htm
      郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报. 自然科学版, 40(9): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201909021.htm
      张宝一, 杨莉, 陈笑扬, 等, 2017. 基于图切地质剖面的区域成矿地质体三维建模与资源评价——以桂西南地区锰矿为例. 吉林大学学报: 地球科学版, 47(3): 933-948. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703027.htm
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      赵萌, 唐辉明, 詹红兵, 等, 2022. 求解岩体裂隙产状三维概率分布的数值方法. 地球科学, 47(4): 1470-1482. doi: 10.3799/dqkx.2021.056
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(2)

      Article views (777) PDF downloads(102) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return