• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Chen Dong, Ge Qian, Lei Ziyan, Zhang Yongcong, Han Xibin, 2024. Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea. Earth Science, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070
    Citation: Chen Dong, Ge Qian, Lei Ziyan, Zhang Yongcong, Han Xibin, 2024. Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea. Earth Science, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070

    Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea

    doi: 10.3799/dqkx.2023.070
    • Received Date: 2023-03-01
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • To better understand the current evolution of the Antarctic ice sheet and climate, as well as to provide a basis fo future predictions of ice sheet and climate change, the organic carbon and nitrogen contents and stable isotope values of sediments from Hole A11-02 were analyzed, combined with the characteristics of grain size and geochemical elements, to explore the origin and paleoclimatic significance of organic matter in sediments from the Amundsen Sea, West Antarctic since the mid-Holocene. The δ13Corg value of the sediments indicates that the organic matter is mainly input from marine, and the contribution of terrestrial organic matter is relatively small. By analyzing the changes of sediment total organic carbon content and sea source organic matter content, combined with the variation characteristics of grain size and elements, it is believed that the change of paleoproductivity in the study area since the mid-Holocene is mainly related to climate change, and then it is identified that there are four cold stages at 4 750-4 500 a BP, 3 600-3 400 a BP, 2 250-2 000 a BP and 600-400 a BP.

       

    • loading
    • Arrigo, K. R., van Dijken, G. L., 2003. Phytoplankton Dynamics within 37 Antarctic Coastal Polynya Systems. Journal of Geophysical Research: Oceans, 108(C8): 1-15. https://doi.org/10.1029/2002jc001739
      Baroni, C., Orombelli, G., 1994. Abandoned Penguin Rookeries as Holocene Paleoclimatic Indicators in Antarctica. Geology, 22(1): 23. https://doi.org/10.1130/0091-7613(1994)022<0023:aprahp>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0023:aprahp>2.3.co;2
      Björck, S., Olsson, S., Ellis-Evans, C., et al., 1996. Late Holocene Palaeoclimatic Records from Lake Sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3/4): 195-220. https://doi.org/10.1016/0031-0182(95)00086-0
      Bonn, W. J., Gingele, F. X., Grobe H, et al., 1998. Palaeoproductivity at the Antarctic Continental Margin: Opal and Barium Records for the Last 400 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 139(3-4): 195-211. https://doi.org/10.1016/S0031-0182(97)00144-2
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      DeMaster, D. J., Ragueneau, O., Nittrouer, C. A., 1996. Preservation Efficiencies and Accumulation Rates for Biogenic Silica and Organic C, N, and P in High‐latitude Sediments: The Ross Sea. Journal of Geophysical Research: Oceans, 101(C8): 18501-18518. https://doi.org/10.1029/96jc01634
      Ducklow, H. W., Erickson, M., Kelly, J., et al., 2008. Particle Export from the Upper Ocean over the Continental Shelf of the West Antarctic Peninsula: A Long-Term Record, 1992-2007. Deep Sea Research Part II: Topical Studies in Oceanography, 55(18/19): 2118-2131. https://doi.org/10.1016/j.dsr2.2008.04.028
      Favier, L., Durand, G., Cornford, S. L., et al., 2014. Retreat of Pine Island Glacier Controlled by Marine Ice-Sheet Instability. Nature Climate Change, 4(2): 117-121. https://doi.org/10.1038/nclimate2094
      Gao, Z. Y., Chen, L. Q., Wang, W. Q., et al., 2001. Air-Sea Fluxes and the Distribution of Sink and Source of CO2 between 80°W and 80°E in the Southern Ocean. Chinese Journal of Polar Research, 13(3): 175-186(in Chinese with English abstract).
      Gerringa, L. J. A., Alderkamp, A. C., Laan, P., et al., 2012. Iron from Melting Glaciers Fuels the Phytoplankton Blooms in Amundsen Sea (Southern Ocean): Iron Biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76(11-25): 16-31. https://doi.org/10.1016/j.dsr2.2012.03.007
      Gladstone, R. M., Bigg, G. R., Nicholls, K. W., 2001. Iceberg Trajectory Modeling and Meltwater Injection in the Southern Ocean. Journal of Geophysical Research: Oceans, 106(C9): 19903-19915. https://doi.org/10.1029/2000jc000347
      Ha, H. K., Wåhlin, A. K., Kim, T. W., et al., 2014. Circulation and Modification of Warm Deep Water on the Central Amundsen Shelf. Journal of Physical Oceanography, 44(5): 1493-1501. https://doi.org/10.1175/jpo-d-13-0240.1
      Hillenbrand, C. D., Fütterer, D., Grobe, H., et al., 2002. No Evidence for a Pleistocene Collapse of the West Antarctic Ice Sheet from Continental Margin Sediments Recovered in the Amundsen Sea. Geo-Marine Letters, 22(2): 51-59. https://doi.org/10.1007/s00367-002-0097-7
      Hillenbrand, C. D., Smith, J. A., Kuhn, G., et al., 2010. Age Assignment of a Diatomaceous Ooze Deposited in the Western Amundsen Sea Embayment after the last Glacial Maximum. Journal of Quaternary Science, 25(3): 280-295. https://doi.org/10.1002/jqs.1308
      Hillenbrand, C. D., Smith, J. A., Hodell, D. A., et al., 2017. West Antarctic Ice Sheet Retreat Driven by Holocene Warm Water Incursions. Nature, 547(7661): 43-48. https://doi.org/10.1038/nature22995