• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Xue Weiguang, Deng Yamin, Xue Jiangkai, Du Yao, Xu Yuxiao, Fan Ruiyu, 2024. Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene. Earth Science, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076
    Citation: Xue Weiguang, Deng Yamin, Xue Jiangkai, Du Yao, Xu Yuxiao, Fan Ruiyu, 2024. Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene. Earth Science, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076

    Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene

    doi: 10.3799/dqkx.2023.076
    • Received Date: 2023-03-04
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The presence of geogenic high iodine groundwater in alluvial aquifers in the middle reach of the Yangtze River poses a serious threat to regional water supply security. Iron minerals and organic matter in aquifer sediments are the main carriers of iodine, and revealing the control mechanism of climate change on iodine enrichment in aquifers since the Late Pleistocene from the perspective of regional-geological background and sedimentary evolution is a prerequisite for scientific understanding of the causes of high iodine groundwater and ensuring water supply security. In this study, Quaternary sediments in the distribution area of high iodine groundwater in the middle reach of the Yangtze River were collected, and sediment geochemistry was systematically characterized to identify the main carriers of iodine enrichment in aquifer sediments and to reveal the controlling mechanisms of iodine enrichment in aquifers by weathering and deposition pocesses driven by paleoclimatic changes. The results show that the main iodine speciation in sediments are iron oxide-bounded (IFe-ox) and organic matter bounded (Iorg), and the chemical weathering index CIA and K/Na ratio of sediments are significantly positively correlated with IFe-ox and Iorg. Amorphous iron oxides (Feox1), clay minerals and organic matter are the main carriers of iodine. Climate changed from cold and arid to warm and humid since the Late Pleistocene and Holocene, enhanced chemical weathering, which contributed to the formation of more amorphous iron oxides, and the expansion of lakes after the Holocene led to the co-burial of iodine, organic matter and iron oxides in the lacustrine sediments. Paleoclimatic changes play an important role in controlling iodine enrichment in the middle Yangtze River aquifer.

       

    • loading
    • Amini Tabrizi, R., Dontsova, K., Graf Grachet, N., et al., 2022. Elevated Temperatures Drive Abiotic and Biotic Degradation of Organic Matter in a Peat Bog under Oxic Conditions. The Science of the Total Environment, 804: 150045. https://doi.org/10.1016/j.scitotenv.2021.150045
      Andersen, S., Guan, H. X., Teng, W. P., et al., 2009. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biological Trace Element Research, 128(2): 95-103. https://doi.org/10.1007/s12011-008-8257-x
      Bouchez, J., Gaillardet, J., France-Lanord, C., et al., 2011. Grain Size Control of River Suspended Sediment Geochemistry: Clues from Amazon River Depth Profiles. Geochemistry, Geophysics, Geosystems, 12(3): Q03008. https://doi.org/10.1029/2010GC003380
      Boulter, C. A., Hopkinson, L. J., Ineson, M. G., et al., 2004. Provenance and Geochemistry of Sedimentary Components in the Volcano-Sedimentary Complex, Iberian Pyrite Belt: Discrimination between the Sill-Sediment-Complex and Volcanic-Pile Models. Journal of the Geological Society, 161(1): 103-115. https://doi.org/10.1144/0016-764902-159
      Dal Maso, L., Bosetti, C., La Vecchia, C., et al., 2009. Risk Factors for Thyroid Cancer: An Epidemiological Review Focused on Nutritional Factors. Cancer Causes & Control, 20(1): 75-86. https://doi.org/10.1007/s10552-008-9219-5
      Donselaar, M. E., Bhatt, A. G., Ghosh, A. K., et al., 2017. On the Relation between Fluvio-Deltaic Flood Basin Geomorphology and the Wide-Spread Occurrence of Arsenic Pollution in Shallow Aquifers. The Science of the Total Environment, 574: 901-913. https://doi.org/10.1016/j.scitotenv.2016.09.074
      Du, Y., Deng, Y. M., Ma, T., et al., 2018. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
      Eusterhues, K., Rennert, T., Knicker, H., et al., 2011. Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environmental Science & Technology, 45(2): 527-533. https://doi.org/10.1021/es1023898
      Eusterhues, K., Wagner, F. E., Häusler, W., et al., 2008. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-Ray Diffraction and Mössbauer Spectroscopy. Environmental Science & Technology, 42(21): 7891-7897. https://doi.org/10.1021/es800881w
      Gabet, E. J., Edelman, R., Langner, H., 2006. Hydrological Controls on Chemical Weathering Rates at the Soil-Bedrock Interface. Geology, 34(12): 1065. https://doi.org/10.1130/g23085a.1
      Gao, J., Zheng, T. L., Deng, Y. M., et al., 2021. Microbially Mediated Mobilization of Arsenic from Aquifer Sediments under Bacterial Sulfate Reduction. The Science of the Total Environment, 768: 144709. https://doi.org/10.1016/j.scitotenv.2020.144709
      Henjum, S., Barikmo, I., Gjerlaug, A. K., et al., 2010. Endemic Goitre and Excessive Iodine in Urine and Drinking Water among Saharawi Refugee Children. Public Health Nutrition, 13(9): 1472-1477. https://doi.org/10.1017/S1368980010000650
      Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581-3599. https://doi.org/10.1016/j.gca.2011.03.033
      Hu, Q., Moran, J. E., Blackwood, V., 2009. Geochemical Cycling of Iodine Species in Soils. The Comprehensive Handbook on Iodine, Geochemical Cycling of Iodine Species in Soils, Academic Press, New York, 95-107. https://www.osti.gov/biblio/946950
      Jansson, J. K., Hofmockel, K. S., 2020. Soil Microbiomes and Climate Change. Nature Reviews Microbiology, 18: 35-46. https://doi.org/10.1038/s41579-019-0265-7
      Ji, J. F., Balsam, W., Chen, J., 2001. Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry. Quaternary Research, 56(1): 23-30. https://doi.org/10.1006/qres.2001.2238
      Jin, G., Deng, Y. M., Du, Y., et al., 2022. Spatial-Temporal Distribution of Arsenic in Groundwater System in Tian-E-Zhou Wetland of the Yangtze River and Its Controlling Mechanism. Earth Science, 47(11): 4161-4175(in Chinese with English abstract).
      Kaplan, D. I., Denham, M. E., Zhang, S., et al., 2014. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology, 44(20): 2287-2335. https://doi.org/10.1080/10643389.2013.828273
      Kellerman, A. M., Guillemette, F., Podgorski, D. C., et al., 2018. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environmental Science & Technology, 52(5): 2538-2548. https://doi.org/10.1021/acs.est.7b05513
      Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. https://doi.org/10.1016/0016-7037(82)90377-5
      Li, G. X., Li, P., Liu, Y., et al., 2014. Sedimentary System Response to the Global Sea Level Change in the East China Seas since the Last Glacial Maximum. Earth-Science Reviews, 139: 390-405. https://doi.org/10.1016/j.earscirev.2014.09.007
      Li, J. X., Wang, Y. T., Xue, X. B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. The Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
      Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. The Science of the Total Environment, 544: 158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
      Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain: Evidences from Speciation Analysis and Geochemical Modeling. The Science of the Total Environment, 598: 239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158
      Long, X. Y., Ji, J. F., Barrón, V., et al., 2016. Climatic Thresholds for Pedogenic Iron Oxides under Aerobic Conditions: Processes and Their Significance in Paleoclimate Reconstruction. Quaternary Science Reviews, 150: 264-277. https://doi.org/10.1016/j.quascirev.2016.08.031
      Luo, Y. P., Deng, Y. M., Du, Y., et al., 2022. Occurrence and Formation of High Iodine Groundwater in oxbows of the Middle Reach of the Yangtze River. Earth Science, 47(2): 662-673(in Chinese with English abstract).
      März, C., Poulton, S. W., Brumsack, H. J., et al., 2012. Climate-Controlled Variability of Iron Deposition in the Central Arctic Ocean (Southern Mendeleev Ridge) over the Last 130 000 Years. Chemical Geology, 330/331: 116-126. https://doi.org/10.1016/j.chemgeo.2012.08.015
      McDonough, L. K., O'Carroll, D. M., Meredith, K., et al., 2020. Changes in Groundwater Dissolved Organic Matter Character in a Coastal Sand Aquifer Due to Rainfall Recharge. Water Research, 169: 115201. https://doi.org/10.1016/j.watres.2019.115201
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      Mikutta, R., Lorenz, D., Guggenberger, G., et al., 2014. Properties and Reactivity of Fe-Organic Matter Associations Formed by Coprecipitation versus Adsorption: Clues from Arsenate Batch Adsorption. Geochimica et Cosmochimica Acta, 144: 258-276. https://doi.org/10.1016/j.gca.2014.08.026
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Pan, H. W., Yu, H. B., Song, Y. H., et al., 2017. Tracking Fluorescent Components of Dissolved Organic Matter from Soils in Large-Scale Irrigated Area. Environmental Science and Pollution Research, 24(7): 6563-6571. https://doi.org/10.1007/s11356-017-8378-x
      Peng, Y., Wu, J., Chao, J. B., et al., 2017. A Method for the the Accurate Determination of 14 Metal Elements in Soils/Sediments by ICP-MS. Environmental Chemistry, 36(1): 175-182 (in Chinese with English abstract). doi: 10.1002/etc.3522
      Poulton, S. W., Canfield, D. E., 2005. Development of a Sequential Extraction Procedure for Iron: Implications for Iron Partitioning in Continentally Derived Particulates. Chemical Geology, 214(3/4): 209-221. https://doi.org/10.1016/j.chemgeo.2004.09.003
      Selim Reza, A. H. M., Jean, J. S., Yang, H. J., et al., 2010. Occurrence of Arsenic in Core Sediments and Groundwater in the Chapai-Nawabganj District, NorthWestern Bangladesh. Water Research, 44(6): 2021-2037. https://doi.org/10.1016/j.watres.2009.12.006
      Shen, S., Luo, K. W., Ma, T., et al., 2022. Nitrogen Burial Characteristics of Quaternary Sediments and Its Controls on High Ammonium Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 842: 156659. https://doi.org/10.1016/j.scitotenv.2022.156659
      Sun, D. J., Gao, Y. H., Liu, H., 2019. Achievements and Prospects of Endemic Disease Prevention and Control in China in Past 70 Years. Chinese Journal of Public Health, 35(7): 793-796(in Chinese with English abstract).
      Wang, Y. X., Li, J. X., Ma, T., et al., 2021. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389.2020.1807452
      Wei, G. J., Li, X. H., Liu, Y., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 21(4): PA4214. https://doi.org/10.1029/2006PA001300
      Xie, X. J., Wang, Y. X., Ellis, A., et al., 2014. Impact of Sedimentary Provenance and Weathering on Arsenic Distribution in Aquifers of the Datong Basin, China: Constraints from Elemental Geochemistry. Journal of Hydrology, 519: 3541-3549. https://doi.org/10.1016/j.jhydrol.2014.10.044
      Xu, C., Kaplan, D. I., Zhang, S. J., et al., 2015. Radioiodine Sorption/Desorption and Speciation Transformation by Subsurface Sediments from the Hanford Site. Journal of Environmental Radioactivity, 139: 43-55. https://doi.org/10.1016/j.jenvrad.2014.09.012
      Xue, J. K., Deng, Y. M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149(in Chinese with English abstract).
      Xue, J. K., Deng, Y. M., Luo, Y. P., et al., 2022. Unraveling the Impact of Iron Oxides-Organic Matter Complexes on Iodine Mobilization in Alluvial-Lacustrine Aquifers from Central Yangtze River Basin. The Science of the Total Environment, 814: 151930. https://doi.org/10.1016/j.scitotenv.2021.151930
      Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract).
      Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Impacts of Sediment Compaction on Iodine Enrichment in Deep Aquifers of the North China Plain. Water Research, 159: 480-489. https://doi.org/10.1016/j.watres.2019.05.036
      Zhang, J. W., Liang, X., Jin, M. G., et al., 2022. Evolution of the Groundwater Flow System Driven by the Sedimentary Environment since the Last Glacial Maximum in the Central Yangtze River Basin. Journal of Hydrology, 610: 127997. https://doi.org/10.1016/j.jhydrol.2022.127997
      Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
      Zhao, Q., Gan, Y. Q., Deng, Y. M., et al., 2022. Identifying Carbon Processing Based on Molecular Differences between Groundwater and Water-Extractable Aquifer Sediment Dissolved Organic Matter in a Quaternary Alluvial-Lacustrine Aquifer. Applied Geochemistry, 137: 105199. https://doi.org/10.1016/j.apgeochem.2022.105199
      金戈, 邓娅敏, 杜尧, 等, 2022. 天鹅洲长江故道湿地地下水砷的时空分布特征及控制机理. 地球科学, 47(11): 4161-4175. doi: 10.3799/dqkx.2022.344
      罗义鹏, 邓娅敏, 杜尧, 等, 2022. 长江中游故道区高碘地下水分布与形成机理. 地球科学, 47(2): 662-673. doi: 10.3799/dqkx.2021.031
      彭杨, 吴婧, 巢静波, 等, 2017. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法. 环境化学, 36(1): 175-182.
      孙殿军, 高彦辉, 刘辉, 2019. 中国70年地方病防治成效及展望. 中国公共卫生, 35(7): 793-796.
      薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
      薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (266) PDF downloads(28) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return