Citation: | Kang Shisheng, Liu Heng, Hu Tianyang, Sun Lin, Zhang Yunfei, Liu Lei, 2023. Petrogenesis and Geotectonica Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359. doi: 10.3799/dqkx.2023.077 |
Barker, F., Arth, J. G., 1976. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4(10): 371-374. https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
|
Barth, M. G., Foley, S. F., Horn, I., 2002. Partial Melting in Archean Subduction Zones: Constraints from Experimentally Determined Trace Element Partition Coefficients between Eclogitic Minerals and Tonalitic Melts under Upper Mantle Conditions. Precambrian Research, 113(3-4): 323-340. https://doi.org/10.1016/S0301-9268(01)00216-9
|
Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008
|
Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3-4): 480-496. https://doi.org/10.1016/j.epsl.2005.04.014
|
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1-2): 14-32. https://doi.org/10.1130/b30722.1
|
Condie, K. C., 2000. Episodic Continental Growth Models: Afterthoughts and Extensions. Tectonophysics, 322(1-2): 153-162. https://doi.org/10.1016/S0040-1951(00)00061-5
|
Condie, K. C., 2005. TTGS and Adakites: Are they both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
|
Condie, K. C., 1981. Chapter 1 Archean Granite-Greenstone Terranes. Developments in Precambrian Geology, 3: 1-44. https://doi.org/10.1016/S0166-2635(08)70074-4
|
Deng, H., Jia, N., Kusky, T., et al., 2022. From Subduction Initiation to Hot Subduction: Life of a Neoarchean Subduction Zone from the Dengfeng Greenstone Belt, North China Craton. GSA Bulletin, 134(5-6): 1277-1300. https://doi.org/10.1130/b35994.1
|
Deng, H., Kusky, T., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275: 241-264. https://doi.org/10.1016/j.precamres.2016.01.024
|
Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. https://doi.org/10.1016/j.gr.2011.01.011
|
Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/JB095iB13p21503
|
Foley, S. F., 2008. Rejuvenation and Erosion of the Cratonic Lithosphere. Nature Geoscience, 1(8): 503-510. https://doi.org/10.1038/ngeo261
|
Foley, S. F., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799
|
Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2
|
Hastie, A. R., Fitton, J. G., Bromiley, G. D., et al., 2016. The Origin of Earth's First Continents and the Onset of Plate Tectonics. Geology, 44(10): 855-858. https://doi.org/10.1130/g38226.1
|
Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are they Derived from a Mantle Wedge Metasomatised by Slab Melts? Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018
|
Hoffmann, J. E., Münker, C., Næraa, T., et al., 2011. Mechanisms of Archean Crust Formation Inferred from High-Precision HFSE Systematics in TTGS. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. https://doi.org/10.1016/j.gca.2011.04.027
|
Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025
|
Huang, B., 2020. Neoarchean Accretionary-to-Collisional Orogenesis in the Southern North China Craton and Its Geodynamic Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8
|
Huang, B., Kusky, T. M., Johnson, T. E., et al., 2020. Paired Metamorphism in the Neoarchean: A Record of Accretionary-to-Collisional Orogenesis in the North China Craton. Earth and Planetary Science Letters, 543: 116355. https://doi.org/10.1016/j.epsl.2020.116355
|
Huang, B., Kusky, T., Wang, L., et al., 2019. Structural Relationships and Kinematics of the Neoarchean Dengfeng Forearc and Accretionary Complexes, Southern North China Craton. GSA Bulletin, 131(5-6): 966-996. https://doi.org/10.1130/b31938.1
|
Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
|
Ishizuka, O., Taylor, R. N., Umino, S., et al., 2020. Geochemical Evolution of Arc and Slab Following Subduction Initiation: A Record from the Bonin Islands, Japan. Journal of Petrology, 61(5): egaa050. https://doi.org/10.1093/petrology/egaa050
|
Johnson, T. E., Brown, M., Gardiner, N. J., et al., 2017. Earth's First Stable Continents Did not Form by Subduction. Nature, 543(7644): 239-242. https://doi.org/10.1038/nature21383
|
Johnson, T. E., Kirkland, C. L., Lu, Y. J., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y
|
Kröner, A., Compston, W., Zhang, G. W., et al., 1988. Age and Tectonic Setting of Late Archean Greenstone-Gneiss Terrain in Henan Province, China, as Revealed by Single-Grain Zircon Dating. Geology, 16(3): 211. https://doi.org/10.1130/0091-7613(1988)0160211: aatsol>2.3.co;2 doi: 10.1130/0091-7613(1988)0160211:aatsol>2.3.co;2
|
Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
|
Lao, Z. Q., Wang, S. Y., 1999. New Advances in the Study of the Dengfeng Complex in the Songshan Region, Henan Province. Regional Geology of China, 18(1): 9-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.1999.01.002
|
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
|
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1012.3.CO;2
|
Martin, H., 1994. Chapter 6 the Archean Grey Gneisses and the Genesis of Continental Crust. Developments in Precambrian Geology, 11: 205-259. https://doi.org/10.1016/S0166-2635(08)70224-X
|
Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
|
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite- Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
|
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
|
Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
|
Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/ 10.1016/j.lithos.2012.06.010
|
Palin, R. M., White, R. W., Green, E. C. R., 2016. Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean: Constraints from Phase Equilibrium Modelling. Precambrian Research, 287: 73-90. https://doi.org/10.1016/j.precamres.2016.11.001
|
Polat, A., 2012. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 40(4): 383-384. https://doi.org/10.1130/focus042012.1
|
Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605-609. https://doi.org/10.1038/nature02031
|
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
|
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
|
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams, Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
|
Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
|
Shervais, J. W., Reagan, M. K., Godard, M., et al., 2021. Magmatic Response to Subduction Initiation, Part Ⅱ: Boninites and Related Rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009093. https://doi.org/10.1029/2020GC009093
|
Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/S0012-821X(00)00236-3
|
Smithies, R. H., Champion, D. C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12): 1653-1671. https://doi.org/10.1093/petrology/41.12.1653
|
Smithies, R. H., Lu, Y. J., Johnson, T. E., et al., 2019. No Evidence for High-Pressure Melting of Earth's Crust in the Archean. Nature Communications, 10: 5559. https://doi.org/10.1038/s41467-019-13547-x
|
Sun, G. Z., Liu, S. W., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888. https://doi.org/10.1038/s41467-021-24139-z
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Wan, Y. S., 2022. How Did the Oldest Continental Crust Form? Earth Science, 47(10): 3776-3778 (in Chinese with English abstract).
|
Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2022. Huge Growth of the Late Mesoarchean-Early Neoarchean(2.6-3.0 Ga) Continental Crust in the North China Craton: A Review. Journal of Geomechanics, 28(5): 866-906 (in Chinese with English abstract).
|
Wan, Y. S., Liu, D. Y., Wang, S. Y., et al., 2009. Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China): Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.07.007
|
Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).
|
Wan, Y., Liu, D., Wang, S., et al., 2010. Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 310(10): 1503-1552. https://doi.org/10.2475/10.2010.11
|
Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science in China (Series D), 50(12): 1845-1873 (in Chinese).
|
Wang, W., Cawood, P. A., Liu, S. W., et al., 2017a. Cyclic Formation and Stabilization of Archean Lithosphere by Accretionary Orogenesis: Constraints from TTG and Potassic Granitoids, North China Craton. Tectonics, 36(9): 1724-1742. https://doi.org/10.1002/2017TC004600
|
Wang, X., Huang, X. L., Yang, F., et al., 2017b. Late Neoarchean Magmatism and Tectonic Evolution Recorded in the Dengfeng Complex in the Southern Segment of the Trans-North China Orogen. Precambrian Research, 302: 180-197. https://doi.org/10.1016/j.precamres.2017.10.005
|
Wang, Z. J., Shen, Q. H., Wan, Y. S., 2004. SHRIMP U-Pb Zircon Geochronology of the Shipaihe "Metadiorite Mass" from Dengfeng County, Henan Province. Acta Geosicientia Sinica, 25(3): 295-298 (in Chinese with English abstract).
|
Willbold, M., Hegner, E., Stracke, A., et al., 2009. Continental Geochemical Signatures in Dacites from Iceland and Implications for Models of Early Archaean Crust Formation. Earth and Planetary Science Letters, 279(1-2): 44-52. https://doi.org/10.1016/j.epsl.2008.12.029
|
Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1
|
Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3-4): 339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014
|
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
|
Zhang, G. W., Bai, Y. B., Sun, Y., et al., 1985. Composition and Evolution of the Archaean Crust in Central Henan, China. Precambrian Research, 27(1-3): 7-35. https://doi.org/10.1016/0301-9268(85)90004-X
|
Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
|
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
|
Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1): 1-19 (in Chinese with English abstract). doi: 10.1111/1755-6724.14621
|
Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Earth Science, 47(10): 3765 (in Chinese with English abstract).
|
Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract).
|
Zhou, Y. Y., Zhao, T. P., Xue, L. W., et al., 2009. Geochemistry and Origin of Neoarchean Amphibolites in Songshan, Hennan Province. Acta Petrologica Sinica, 25(11): 3043-3056 (in Chinese with English abstract).
|
Zhou, Y. Y., Zhao, T. P., Zhai, M. G., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023
|
侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
|
黄波, 2020. 华北克拉通南缘新太古代增生碰撞造山作用及其地球动力学启示(博士学位论文). 武汉: 中国地质大学.
|
劳子强, 王世炎, 1999. 河南省嵩山地区登封群研究的新进展. 中国区域地质, 18(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD901.001.htm
|
万渝生, 2022. 最古老陆壳是如何形成的?地球科学, 47(10): 3776-3778. doi: 10.3799/dqkx.2022.804
|
万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期-中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述. 地质力学学报, 28(5): 866-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202205010.htm
|
万渝生, 刘敦一, 王世炎, 等, 2009. 登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999. doi: 10.3321/j.issn:0001-5717.2009.07.007
|
万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121
|
王强, 郝露露, 张修政, 等, 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学(D辑), 50(12): 1845-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202307014.htm
|
王泽九, 沈其韩, 万渝生, 2004. 河南登封石牌河"变闪长岩体"的锆石SHRIMP年代学研究. 地球学报, 25(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200403003.htm
|
赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm
|
郑永飞, 2022. 地幔是否对花岗岩的形成有贡献? 地球科学, 47(10): 3765. doi: 10.3799/dqkx.2022.800
|
郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
|
周艳艳, 赵太平, 薛良伟, 等, 2009. 河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因. 岩石学报, 25(11): 3043-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911034.htm
|
![]() |
![]() |