• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 9
    Sep.  2023
    Turn off MathJax
    Article Contents
    Kang Shisheng, Liu Heng, Hu Tianyang, Sun Lin, Zhang Yunfei, Liu Lei, 2023. Petrogenesis and Geotectonica Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359. doi: 10.3799/dqkx.2023.077
    Citation: Kang Shisheng, Liu Heng, Hu Tianyang, Sun Lin, Zhang Yunfei, Liu Lei, 2023. Petrogenesis and Geotectonica Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359. doi: 10.3799/dqkx.2023.077

    Petrogenesis and Geotectonica Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex

    doi: 10.3799/dqkx.2023.077
    • Received Date: 2023-02-05
      Available Online: 2023-10-07
    • Publish Date: 2023-09-25
    • Tonalite-trondhjemite-granodiorite (TTG) is the most important component of the early continental crust of the Earth, which is closely related to the early tectonic environment and crustal differentiation process. By means of petrography, rare earth element differentiation, U-Pb age and Hf model age of zircon and trace element simulation based on the partial melting degree, this paper defines the protolith of TTG gneiss in Dengfeng area and its residual phase during partial melting. Meanwhile, zircon U-Pb dating shows that Dengfeng complex recorded two TTG magmatism (2.57-2.55 Ga and 2.55-2.51 Ga). TTG in Dengfeng complex has high εHf(t) and εNd(t) values (1.7-9.7 and 0.23-3.87), which are close to the depleted mantle values of the same period. In addition, TTG gneiss has high SiO2, Na2O, La/Yb and Sr/Y ratios and low Mg#, Cr, Ni, Yb, and Y contents. These data indicate that the rocks in the Dengfeng area represent the main components of mature crust. It is suggested by various data, including rock types, structural patterns, and geochemistry, that the greenstone belt combination (metamorphic volcanic sedimentary rocks) within the Dengfeng complex is forearc and accretionary terranes. The TTG-dominated Dengfeng complexes in the eastern and western parts may represent the island arc's core, and they collectively constitute the signature product of plate convergence. Further simulations of trace elements indicate that TTG gneisses in the Dengfeng area were partially melted from hydrated basaltic (amphibolite) rocks of the subducted oceanic crust, leaving behind garnet-bearing amphibolite residues. As such, we can infer that there was significant growth of young crust during this period, and the late Neoarchean TTG gneiss (2.57- 2.50 Ga) found along the southern margin of the North China Craton provides evidence to the formation of a new continental crust.

       

    • loading
    • Barker, F., Arth, J. G., 1976. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4(10): 371-374. https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
      Barth, M. G., Foley, S. F., Horn, I., 2002. Partial Melting in Archean Subduction Zones: Constraints from Experimentally Determined Trace Element Partition Coefficients between Eclogitic Minerals and Tonalitic Melts under Upper Mantle Conditions. Precambrian Research, 113(3-4): 323-340. https://doi.org/10.1016/S0301-9268(01)00216-9
      Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008
      Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3-4): 480-496. https://doi.org/10.1016/j.epsl.2005.04.014
      Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1-2): 14-32. https://doi.org/10.1130/b30722.1
      Condie, K. C., 2000. Episodic Continental Growth Models: Afterthoughts and Extensions. Tectonophysics, 322(1-2): 153-162. https://doi.org/10.1016/S0040-1951(00)00061-5
      Condie, K. C., 2005. TTGS and Adakites: Are they both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
      Condie, K. C., 1981. Chapter 1 Archean Granite-Greenstone Terranes. Developments in Precambrian Geology, 3: 1-44. https://doi.org/10.1016/S0166-2635(08)70074-4
      Deng, H., Jia, N., Kusky, T., et al., 2022. From Subduction Initiation to Hot Subduction: Life of a Neoarchean Subduction Zone from the Dengfeng Greenstone Belt, North China Craton. GSA Bulletin, 134(5-6): 1277-1300. https://doi.org/10.1130/b35994.1
      Deng, H., Kusky, T., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275: 241-264. https://doi.org/10.1016/j.precamres.2016.01.024
      Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. https://doi.org/10.1016/j.gr.2011.01.011
      Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/JB095iB13p21503
      Foley, S. F., 2008. Rejuvenation and Erosion of the Cratonic Lithosphere. Nature Geoscience, 1(8): 503-510. https://doi.org/10.1038/ngeo261
      Foley, S. F., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799
      Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2
      Hastie, A. R., Fitton, J. G., Bromiley, G. D., et al., 2016. The Origin of Earth's First Continents and the Onset of Plate Tectonics. Geology, 44(10): 855-858. https://doi.org/10.1130/g38226.1
      Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are they Derived from a Mantle Wedge Metasomatised by Slab Melts? Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018
      Hoffmann, J. E., Münker, C., Næraa, T., et al., 2011. Mechanisms of Archean Crust Formation Inferred from High-Precision HFSE Systematics in TTGS. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. https://doi.org/10.1016/j.gca.2011.04.027
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025
      Huang, B., 2020. Neoarchean Accretionary-to-Collisional Orogenesis in the Southern North China Craton and Its Geodynamic Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8
      Huang, B., Kusky, T. M., Johnson, T. E., et al., 2020. Paired Metamorphism in the Neoarchean: A Record of Accretionary-to-Collisional Orogenesis in the North China Craton. Earth and Planetary Science Letters, 543: 116355. https://doi.org/10.1016/j.epsl.2020.116355
      Huang, B., Kusky, T., Wang, L., et al., 2019. Structural Relationships and Kinematics of the Neoarchean Dengfeng Forearc and Accretionary Complexes, Southern North China Craton. GSA Bulletin, 131(5-6): 966-996. https://doi.org/10.1130/b31938.1
      Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
      Ishizuka, O., Taylor, R. N., Umino, S., et al., 2020. Geochemical Evolution of Arc and Slab Following Subduction Initiation: A Record from the Bonin Islands, Japan. Journal of Petrology, 61(5): egaa050. https://doi.org/10.1093/petrology/egaa050
      Johnson, T. E., Brown, M., Gardiner, N. J., et al., 2017. Earth's First Stable Continents Did not Form by Subduction. Nature, 543(7644): 239-242. https://doi.org/10.1038/nature21383
      Johnson, T. E., Kirkland, C. L., Lu, Y. J., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y
      Kröner, A., Compston, W., Zhang, G. W., et al., 1988. Age and Tectonic Setting of Late Archean Greenstone-Gneiss Terrain in Henan Province, China, as Revealed by Single-Grain Zircon Dating. Geology, 16(3): 211. https://doi.org/10.1130/0091-7613(1988)0160211: aatsol>2.3.co;2 doi: 10.1130/0091-7613(1988)0160211:aatsol>2.3.co;2
      Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
      Lao, Z. Q., Wang, S. Y., 1999. New Advances in the Study of the Dengfeng Complex in the Songshan Region, Henan Province. Regional Geology of China, 18(1): 9-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.1999.01.002
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1012.3.CO;2
      Martin, H., 1994. Chapter 6 the Archean Grey Gneisses and the Genesis of Continental Crust. Developments in Precambrian Geology, 11: 205-259. https://doi.org/10.1016/S0166-2635(08)70224-X
      Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
      Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite- Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001
      Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
      Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/ 10.1016/j.lithos.2012.06.010
      Palin, R. M., White, R. W., Green, E. C. R., 2016. Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean: Constraints from Phase Equilibrium Modelling. Precambrian Research, 287: 73-90. https://doi.org/10.1016/j.precamres.2016.11.001
      Polat, A., 2012. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 40(4): 383-384. https://doi.org/10.1130/focus042012.1
      Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605-609. https://doi.org/10.1038/nature02031
      Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
      Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams, Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
      Shervais, J. W., Reagan, M. K., Godard, M., et al., 2021. Magmatic Response to Subduction Initiation, Part Ⅱ: Boninites and Related Rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009093. https://doi.org/10.1029/2020GC009093
      Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/S0012-821X(00)00236-3
      Smithies, R. H., Champion, D. C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12): 1653-1671. https://doi.org/10.1093/petrology/41.12.1653
      Smithies, R. H., Lu, Y. J., Johnson, T. E., et al., 2019. No Evidence for High-Pressure Melting of Earth's Crust in the Archean. Nature Communications, 10: 5559. https://doi.org/10.1038/s41467-019-13547-x
      Sun, G. Z., Liu, S. W., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888. https://doi.org/10.1038/s41467-021-24139-z
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wan, Y. S., 2022. How Did the Oldest Continental Crust Form? Earth Science, 47(10): 3776-3778 (in Chinese with English abstract).
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2022. Huge Growth of the Late Mesoarchean-Early Neoarchean(2.6-3.0 Ga) Continental Crust in the North China Craton: A Review. Journal of Geomechanics, 28(5): 866-906 (in Chinese with English abstract).
      Wan, Y. S., Liu, D. Y., Wang, S. Y., et al., 2009. Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China): Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.07.007
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).
      Wan, Y., Liu, D., Wang, S., et al., 2010. Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 310(10): 1503-1552. https://doi.org/10.2475/10.2010.11
      Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science in China (Series D), 50(12): 1845-1873 (in Chinese).
      Wang, W., Cawood, P. A., Liu, S. W., et al., 2017a. Cyclic Formation and Stabilization of Archean Lithosphere by Accretionary Orogenesis: Constraints from TTG and Potassic Granitoids, North China Craton. Tectonics, 36(9): 1724-1742. https://doi.org/10.1002/2017TC004600
      Wang, X., Huang, X. L., Yang, F., et al., 2017b. Late Neoarchean Magmatism and Tectonic Evolution Recorded in the Dengfeng Complex in the Southern Segment of the Trans-North China Orogen. Precambrian Research, 302: 180-197. https://doi.org/10.1016/j.precamres.2017.10.005
      Wang, Z. J., Shen, Q. H., Wan, Y. S., 2004. SHRIMP U-Pb Zircon Geochronology of the Shipaihe "Metadiorite Mass" from Dengfeng County, Henan Province. Acta Geosicientia Sinica, 25(3): 295-298 (in Chinese with English abstract).
      Willbold, M., Hegner, E., Stracke, A., et al., 2009. Continental Geochemical Signatures in Dacites from Iceland and Implications for Models of Early Archaean Crust Formation. Earth and Planetary Science Letters, 279(1-2): 44-52. https://doi.org/10.1016/j.epsl.2008.12.029
      Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1
      Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3-4): 339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhang, G. W., Bai, Y. B., Sun, Y., et al., 1985. Composition and Evolution of the Archaean Crust in Central Henan, China. Precambrian Research, 27(1-3): 7-35. https://doi.org/10.1016/0301-9268(85)90004-X
      Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1): 1-19 (in Chinese with English abstract). doi: 10.1111/1755-6724.14621
      Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Earth Science, 47(10): 3765 (in Chinese with English abstract).
      Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract).
      Zhou, Y. Y., Zhao, T. P., Xue, L. W., et al., 2009. Geochemistry and Origin of Neoarchean Amphibolites in Songshan, Hennan Province. Acta Petrologica Sinica, 25(11): 3043-3056 (in Chinese with English abstract).
      Zhou, Y. Y., Zhao, T. P., Zhai, M. G., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      黄波, 2020. 华北克拉通南缘新太古代增生碰撞造山作用及其地球动力学启示(博士学位论文). 武汉: 中国地质大学.
      劳子强, 王世炎, 1999. 河南省嵩山地区登封群研究的新进展. 中国区域地质, 18(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD901.001.htm
      万渝生, 2022. 最古老陆壳是如何形成的?地球科学, 47(10): 3776-3778. doi: 10.3799/dqkx.2022.804
      万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期-中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述. 地质力学学报, 28(5): 866-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202205010.htm
      万渝生, 刘敦一, 王世炎, 等, 2009. 登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999. doi: 10.3321/j.issn:0001-5717.2009.07.007
      万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121
      王强, 郝露露, 张修政, 等, 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学(D辑), 50(12): 1845-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202307014.htm
      王泽九, 沈其韩, 万渝生, 2004. 河南登封石牌河"变闪长岩体"的锆石SHRIMP年代学研究. 地球学报, 25(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200403003.htm
      赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm
      郑永飞, 2022. 地幔是否对花岗岩的形成有贡献? 地球科学, 47(10): 3765. doi: 10.3799/dqkx.2022.800
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
      周艳艳, 赵太平, 薛良伟, 等, 2009. 河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因. 岩石学报, 25(11): 3043-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911034.htm
    • dqkxzx-48-9-3342-附表.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (464) PDF downloads(53) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return