Citation: | Zhao Boyuan, Wang Shuai, Chen Feng, He Genyi, Huang Xuelian, Wang Sijia, Qi Shihua, 2024. Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748. doi: 10.3799/dqkx.2023.081 |
Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. http://doi.org/10.1016/0377-0273(85)90039-3
|
Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (West China). Journal of Asian Earth Sciences, 44: 136-148. https://doi.org/10.1016/j.jseaes.2011.04.020
|
Bloch, W., Schurr, B., Yuan, X. H., et al., 2021. Structure and Stress Field of the Lithosphere between Pamir and Tarim. Geophysical Research Letters, 48(22): e95413. https://doi.org/10.1029/2021gl095413
|
Brown, L., Zhao, W., Nelson, K., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688-1690. https://doi.org/10.1126/science.274.5293.1688
|
Chen, J., Li, T., Li, W. Q., et al., 2011. Late Cenozoic and Present Tectonic Deformation in the Pamir Salient, Northwestern China. Seismology and Geology, 33(2): 241-259(in Chinese with English abstract).
|
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
|
Fan, Y., Pang, Z., Liao, D., et al., 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau. Water, 11(8): 1631. https://doi.org/10.3390/w11081631
|
Feng, F., Li, Z. Q., Jin, S., et al., 2013. Characteristics of δ18O and δD in Precipitation and Its Water Vapor Sources in the Upper Urumqi River Basin, Eastern Tianshan. Advances in Water Science, 24(5): 634-641(in Chinese with English abstract).
|
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
|
Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
|
Garrels, R., Christ, C. L., 1965. Solutions, Minerals and Equilibria. Harper and Row, New York. Journal of the Mineralogical Society, 35(275): 1024-1025.
|
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
|
Giggenbach, W. F., Glover, R. B., 1992. Tectonic Regime and Major Processes Governing the Chemistry of Water and Gas Discharges from the Rotorua Geothermal Field, New Zealand. Geothermics, 21(1-2): 121-140. https://doi.org/10.1016/0375-6505(92)90073-i
|
Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215/216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
|
Hacker, B., Luffi, P., Lutkov, V., et al., 2005. Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir. Journal of Petrology, 46(8): 1661-1687. https://doi.org/10.1093/petrology/egi030
|
Henley, R. W., Ellis, A. J., 1983. Geothermal Systems Ancient and Modern: A Geochemical Review. Earth-Science Reviews, 19(1): 0012825283900752. https://doi.org/10.1016/0012-8252(83)90075-2
|
Jiang, Y. H., Yang, W. Z., 2000. Geochemical Characteristics and Rock Series of Himalayan Granitoids in Western Qinghai-Xizang Plateau. Acta Petrrologica et Mineralogica, 19(4): 289-296(in Chinese with English abstract).
|
Ke, S., Mo, X. X., Luo, Z. H., et al., 2006. Petrogenesis and Geochemistry of Cenozoic Taxkorgan Alkalic Complex and Its Geological Significance. Acta Petrologica Sinica, 22(4): 905-915(in Chinese with English abstract).
|
Li, J. X., Yang, G., Sagoe, G., et al., 2018. Major Hydrogeochemical Processes Controlling the Composition of Geothermal Waters in the Kangding Geothermal Field, Western Sichuan Province. Geothermics, 75: 154-163. https://doi.org/10.1016/j.geothermics.2018.04.008
|
Li, X., Qi, J. H., Yi, L., et al., 2021. Hydrochemical Characteristics and Evolution of Geothermal Waters in the Eastern Himalayan Syntaxis Geothermal Field, Southern Tibet. Geothermics, 97: 102233. https://doi.org/10.1016/j.geothermics.2021.102233
|
Li, Y. M., Pang, Z. H., Yang, F. T., et al., 2017. Hydrogeochemical Characteristics and Genesis of the High-Temperature Geothermal System in the Tashkorgan Basin of the Pamir Syntax, Western China. Journal of Asian Earth Sciences, 149: 134-144. https://doi.org/10.1016/j.jseaes.2017.06.007
|
Liu, M. L., Zheng, A. T., Shang, J. B., et al., 2023. Progress in Study of Boron Geochemistry in High Temperature Geothermal Fluids. Earth Science, (3): 878-893(in Chinese with English abstract).
|
Nitschke, F., Held, S., Neumann, T., et al., 2018. Geochemical Characterization of the Villarrica Geothermal System, Southern Chile, Part Ⅱ: Site-Specific Re-Evaluation of SiO2 and Na-K Solute Geothermometers. Geothermics, 74: 217-225. https://doi.org/10.1016/j.geothermics.2018.03.006
|
Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
|
Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24(in Chinese with English abstract).
|
Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to Other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/BF00878955
|
Sass, P., Ritter, O., Ratschbacher, L., et al., 2014. Resistivity Structure underneath the Pamir and Southern Tian Shan. Geophysical Journal International, 198(1): 564-579. https://doi.org/10.1093/gji/ggu146
|
Shi, J., Nai, W. H., Li, M., et al., 2018. Hydrogeochemical Characteristics of High Temperature Geothermal Field of the Quman Geothermal Field in Xinjiang. Hydrogeology & Engineering Geology, 45(3): 165-172(in Chinese with English abstract).
|
Shi, J., Wang, M. H., Ma, X. J., et al., 2022. Isotope and Hydrogeochemical Characteristics of the Quman High Temperature Geothermal Field in Taxkorgan, Xinjiang. Acta Geoscientica Sinica, 43(5): 645-653(in Chinese with English abstract).
|
Tong, X. X., Ma, W. M., Sun, X. L., 2017. Characteristic and Environmental Significance of Strontium Isotope in Glacial Meltwater of the Tashkurgan Area in Pamirs, Xinjiang. Environmental Chemistry, 36(4): 830-838(in Chinese with English abstract).
|
Truesdell, A., Fournier, R., 1977. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica versus Enthalpy. Journal of Research of the US Geological Survey, 5(1): 49-52.
|
Wang, X. S., Zhang, G. Q., Choi, C. Y., 2018. Evaluation of a Precision Air-Supply System in Naturally Ventilated Freestall Dairy Barns. Biosystems Engineering, 175: 1-15. https://doi.org/10.1016/j.biosystemseng.2018.08.005
|
Yi, L., Qi, J. H., Li, X., et al., 2021. Geochemical Characteristics and Genesis of the High-Temperature Geothermal Systems in the North Section of the Sanjiang Orogenic Belt in Southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244. https://doi.org/10.1016/j.jvolgeores.2021.107244
|
Zhang, Y. H., Xu, M., Li, X., et al., 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water, 10(1): 80. https://doi.org/10.3390/w10010080
|
Zhou, R., Zhou, X. C., Li, Y., et al., 2022. Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai-Tibet Plateau. Water, 14(9): 1496. https://doi.org/10.3390/w14091496
|
陈杰, 李涛, 李文巧, 等, 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241-259.
|
冯芳, 李忠勤, 金爽, 等, 2013. 天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析. 水科学进展, 24(5): 634-641.
|
姜耀辉, 杨万志, 2000. 青藏高原西部喜马拉雅期花岗岩类特征及岩石系列. 岩石矿物学杂志, 19(4): 289-296.
|
柯珊, 莫宣学, 罗照华, 等, 2006. 塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因. 岩石学报, 22(4): 905-915.
|
刘明亮, 正安婷, 尚建波, 等, 2023. 高温地热流体中硼的地球化学研究进展. 地球科学, 48(3): 878-893. doi: 10.3799/dqkx.2022.235
|
庞忠和, 胡圣标, 汪集旸, 2012. 中国地热能发展路线图. 科技导报, 30(32): 18-24.
|
史杰, 乃尉华, 李明, 等, 2018. 新疆曲曼高温地热田水文地球化学特征研究. 水文地质工程地质, 45(3): 165-172.
|
史杰, 汪美华, 马小军, 等, 2022. 新疆塔什库尔干县曲曼地热田地下热水同位素研究. 地球学报, 43(5): 645-653.
|
仝晓霞, 马武明, 孙兴乐, 2017. 新疆帕米尔高原塔什库尔干地区冰川融水锶同位素特征及其环境意义. 环境化学, 36(4): 830-838.
|