Citation: | Zhao Junjie, Huang Yunfei, Tian Li, Huang Zihang, Wang Yanda, Ji Xia, Zhang Shiyan, Tong Jinnan, 2023. The Characteristics of Giant Ooids from the Poduan Formation during the Early Middle Triassic and Its Environmental Significance at Poduan Section, Ceheng, Guizhou Province. Earth Science, 48(8): 2822-2836. doi: 10.3799/dqkx.2023.087 |
Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
|
Benton, M. J., 2018. Hyperthermal-Driven Mass Extinctions: Killing Models during the Permian-Triassic Mass Extinction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076
|
Bo, J. F., Yao J. X., Xiao, J. F., et al., 2017. Scleractinian Coral and Conodont Biostratigraphy of the Middle-Upper Part of the Poduan Formation in Ceheng, Guizhou Province, South China. Acta Geologic Sinica, 91(2): 487-497 (in Chinese with English abstract).
|
Bottjer, D. J., Clapham, M. E., Fraiser, M. L., et al., 2008. Understanding Mechanisms for the End-Permian Mass Extinction and the Protracted Early Triassic Aftermath and Recovery. GSA Today, 18(9): 4. https://doi.org/10.1130/gsatg8a.1
|
Bustos-Serrano, H., Morse, J. W., Millero, F. J., 2009. The Formation of Whitings on the Little Bahama Bank. Marine Chemistry, 113(1/2): 1-8. https://doi.org/10.1016/j.marchem.2008.10.006
|
Chatalov, A., 2005a. Aragonitic-Calcitic Ooids from Lower to Middle Triassic Peritidal Sediments in the Western Balkanides, Bulgaria. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 237(1): 87-110. https://doi.org/10.1127/njgpa/237/2005/87
|
Chatalov, A., 2005b. Monomineralic Carbonate Ooid Types in the Triassic Sediments from Northwestern Bulgaria. Geologica Balcanica, 35(1/2): 63-91. https://doi.org/10.52321/geolbalc.35.1-2.63
|
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475
|
Chen, Z. Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems During and After Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese with English abstract).
|
Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193
|
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3(3): 197-214. https://doi.org/10.1038/s43017-021-00259-4
|
Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367(6460): 231-236. https://doi.org/10.1038/367231a0
|
Fan, J. S., Wu, Y. S., 2002. Sedimentary Characteristics and Environments of the Poduan Formation of Middle Triassic in Guanling of Guizhou Province. Journal of Palaeogeography, 4(1): 67-74+101-104 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2002.01.008
|
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
|
Feng, Z. Z., Bao, Z. D., Li, S. W., 1997. Lithofacies Palaeogeography of Middle and Lower Triassic of South China. Petroleum Industry Press, Beijing, 222 (in Chinese).
|
Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application Ⅱ. Springer-Verlag, Berlin, 976.
|
Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534 (in Chinese with English abstract).
|
Groves, J. R., Altiner, D., Rettori, R., 2005. Extinction, Survival, and Recovery of Lagenide Foraminifers in the Permian-Triassic Boundary Interval, Central Taurides, Turkey. Journal of Paleontology, 79(sp62): 1-38. https://doi.org/10.1666/0022-3360(2005)79[1:ESAROL]2.0.CO;2.
|
Hu, S. X., Zhang, Q. Y., Chen, Z. Q., et al., 2010. The Luoping Biota: Exceptional Preservation, and New Evidence on the Triassic Recovery from End-Permian Mass Extinction. Proceedings of the Royal Society B: Biological Sciences, 278(1716): 2274-2282. https://doi.org/10.1098/rspb.2010.2235
|
Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2016. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1/2): 229-243. https://doi.org/10.1130/b31458.1
|
Huang, Y. G., Chen, Z. Q., Wu, S. Q., et al., 2022. Anisian (Middle Triassic) Stromatolites from Southwest China: Biogeological Features and Implications for Variations of Filament Size and Diversity of Triassic Cyanobacteria. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111150. https://doi.org/10.1016/j.palaeo.2022.111150
|
Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1
|
Ji, G. F., Fang, H., Shi, Z. Q., et al., 2016. Characteristics and Geological Significance ofthe Late Triassic Carnian oolitic Limestone in Hanwang area, Northwest Sichuan Basin, China. Journal of Chengdu University ofTechnology (Science & TechnologyEdition), 43(1): 68-76(in Chinese with English abstract).
|
Jiang, L. Q., Feely, R. A., Carter, B. R., et al., 2015. Climatological Distribution of Aragonite Saturation State in the Global Oceans. Global Biogeochemical Cycles, 29(10): 1656-1673. https://doi.org/10.1002/2015gb005198
|
Jin, Z. K., Shi, L., Gao, B. S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(6): 965-979 (in Chinese with English abstract).
|
Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/G21295.1
|
Lau, K. V., Maher, K., Altiner, D., et al., 2016. Marine Anoxia and Delayed Earth System Recovery after the End-Permian Extinction. Proceedings of the National Academy of Sciences, 113(9): 2360-2365. https://doi.org/10.1073/pnas.1515080113
|
Lehrmann, D. J., Enos, P., Payne, J. L., et al., 2005. Permian and Triassic Depositional History of the Yangtze Platform and Great Bank of Guizhou in the Nanpanjiang Basin of Guizhou and Guangxi, South China. Albertiana, 33(1): 149-168.
|
Lehrmann, D. J., Payne, J. L., Pei, D. H., et al., 2007. Record of the End-Permian Extinction and Triassic Biotic Recovery in the Chongzuo-Pingguo Platform, Southern Nanpanjiang Basin, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 200-217. https://doi.org/10.1016/j.palaeo.2006.11.044
|
Lehrmann, D. J., Minzoni, M., Li, X. W., et al., 2012. Lower Triassic Oolites of the Nanpanjiang Basin, South China: facies Architecture, Giant ooids, and Diagenesis-Implications for Hydrocarbon Reservoirs Geologic Note. American Association of Petroleum Geologists Bulletin, 96(8): 1389-1414. https://doi.org/10.1306 /01231211148 doi: 10.1306/01231211148
|
Li, F., Wang, X., Xue, W. Q., et al., 2010. Origin and Enviromental Significance of Giant Ooids in the Early Triassic, a new kind of Anachronistic Facies. Acta Sedimentologica Sinica, 28(3): 585-595(in Chinese with English abstract).
|
Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105(3-4): 102-120. https://doi.org/10.1016/j.gloplacha.2011.09.009
|
Li, F., Yan, J. X., Chen, Z. Q., et al., 2015. Global Oolite Deposits Across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 149: 163-180. https://doi.org/10.1016/j.earscirev.2014.12.006
|
Li, F., Yi, C. H., Li, H., et al., 2022. Recent Advances in Ooid Microbial Origin: A Review. Acta Sedimentologica Sinica, 40(2): 319-334 (in Chinese with English abstract).
|
Li, X. W., Trower, E. J., Lehrmann, D. J., et al., 2021. Implications of Giant Ooids for the Carbonate Chemistry of Early Triassic Seawater. Geology, 49(2): 156-161. https://doi.org/10.1130/g47655.1
|
Liu, Z. L., Tong, J. L., 2001. The Middle Triassic Stratigraphy and Sedimentary Paleogeography of South China. Acta Sedimentologica Sinica, 19(3): 327-332+356 (in Chinese with English abstract).
|
Liu, J., Sander, P. M., 2019. The Vossenveld Formation and Biotic Recovery from the Permo-Triassic Extinction. Grondboor & Hamer, 16(73): 147-152.
|
Luo, M., Chen, Z. Q., Zhao, L. S., et al., 2014. Early Middle Triassic Stromatolites from the Luoping Area, Yunnan Province, Southwest China: Geobiologic Features and Environmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 412(Special Issue): 124-140. https://doi.org/10.1016/j.palaeo.2014.07.028
|
Mary, M., Woods, A. D., 2008. Stromatolites of the Lower Triassic Union Wash Formation, CA: Evidence for Continued Post-Extinction Environmental Stress in Western North America through the Spathian. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1/2): 78-86. https://doi.org/10.1016/j.palaeo.2008.01.008
|
Mei, M. X., 2008. Implication for the Unusual Giant Oolites of the Phanerozoic and Their Morphological Diversity: A Case Study from the Triassic Daye Fomation at the Lichuan Section in Hubei Province South China. Geoscience, 22(5): 683-698 (in Chinese with English abstract).
|
Mei, M. X., 2012. Brief Introduction on New Advances on the Origin of Ooids. Acta Sedimentologica Sinica, 30(1): 20-32 (in Chinese with English abstract).
|
Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023
|
Payne, J. L., 2005. Evolutionary Dynamics of Gastropod Size Across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology, 31(2): 269-290. https://doi.org/10.1666/0094-8373(2005)031[0269:edogsa]2.0.co;2
|
Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2006. The Pattern and Timing of Biotic Recovery from the End-Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63-85. https://doi.org/10.2110/palo.2005.p05-12p
|
Pei, Y., Duda, J. P., Schönig, J., et al., 2021. Late Anisian Microbe-Metazoan Build-Ups in the Germanic Basin: Aftermath of the Permian-Triassic Crisis. Lethaia, 54: 823-844. https://doi.org/10.1111/let.12442
|
Sedlacek, A., 2013. Srontium Isotope Stratigraphy and Carbonate Sedimentology of the latest Permian to Early Triassic in the Western United States, Northern Iran and Southern China(Dissertation), Ohio State University, Ohio, 159.
|
Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? China Science Bulletin, 62(11): 1119-1135(in Chinese). doi: 10.1360/N972017-00013
|
Shi, Z. Q., An, H. Y., Yi, H. S., et al., 2011. Classification and Characters of the Early Triassic Anomalous Carbonate Rocks in Upper Yangtze Area. Journal of Palaeogeography, 13(1): 1-10(in Chinese with English abstract).
|
Simone, L., 1981. Ooids: a Review. Earth-Science Reviews, 16: 319-355. https://doi.org/10.1016/0012-8252(80)90053-7
|
Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/high Temperature Double Whammy during the Permian-Triassic Marine Crisis and its Aftermath. Scientific Reports, 4(1): 1-7. https://doi.org/10.1038/srep04132
|
Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of δ 13C Carb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 55(7): 1101-1109. https://doi.org/10.1007/s11430-012-4416-1
|
Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. Earth Sciences, 41(6): 901-918(in Chinese with English abstract).
|
Song, H., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091
|
Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian-Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117
|
Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562(1): 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
|
Summer, D. A., Grotzinger, J. P., 1993. Numerical Modeling of Ooid Size and the Problem of Neoproterozoic Giant Ooids. Joumal of Sedimentary Petrology, 63: 974-982. https://doi.org/10.1306/d4267c5d-2b26-11d7-8648000102c1865d
|
Richter, D. K., 1983. Calcareous Ooids: a Synopsis. In: Peryt, T. M., ed., Coated Grains. Springer-Verlag, Berlin, 71-99.
|
Tan, X. C., Li, L., Liu, H., et al., 2013. Mega-Shoaling in Carbonate Platform of the Middle Triassic Leikoupo Formation, Sichuan Basin, Southwest China. Science China Earth Sciences, 57(3): 465-479. https://doi.org/10.1007/s11430-013-4667-5
|
Tang, R. C., Li, R., Wang, Y., 2018. Sedimentary Characteristics of the Middle Triassic Longtou Formation in Guizhou Province, South China: Implications for Sea-Level Change. Journal of Palaeogeography, 20(3): 389-408(in Chinese with English abstract).
|
Tian, L., Tong, J. N., Sun, D. Y., et al., 2014. The Microfacies and Sedimentary Responses to the Mass Extinction during the Permian-Triassic Transition at Yangou Section, Jiangxi Province, South China. Science China Earth Sciences, 57(9): 2195-2207. https://doi.org/10.1007/s11430-014-4869-5
|
Tian, L., Bottjer, D. J., Tong, J., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. Palaios, 30(9): 714-727. https://doi.org/10.2110/palo.2014.110
|
Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803-815. https://doi.org/10.1016/s1367-9120(1)00058-x
|
Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508(in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.020
|
Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New Δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415(2): 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
|
Trower, E. J., Lamb, M. P., Fischer, W. W., 2017. Experimental Evidence that Ooid Size Reflects a Dynamic Equilibrium between Rapid Precipitation and Abrasion Rates. Earth and Planetary Science Letters, 468(1): 112-118. https://doi.org/10.1016/j.epsl.2017.04.004
|
Trower, E. J., Lamb, M. P., Cantine, M. D., et al., 2018. Active Ooid Growth Driven by Sediment Transport in a HighLamb, M. P., Energy Shoal, Little Ambergris Cay, Turks and Caicos Islands. Journal of Sedimentary Research, 88(9): 1132-1151. https://doi.org/10.2110/jsr.2018.59
|
Trower, E. J., Smith, B. P., Koeshidayatullah, A. I., et al., 2022. Marine Ooid Sizes Record Phanerozoic Seawater Carbonate Chemistry. Geophysical Research Letters, 49(22): e2022GL100800. https://doi.org/10.1029/2022gl100800
|
Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Sciences, Oxford, 482.
|
Varkouhi, S., Jaques Ribeiro, L. M., 2020. Bimineralic Middle Triassic Ooids from Hydra Island: Diagenetic Pathways and Implications for Ancient Seawater Geochemistry. The Depositional Record, 7(2): 344-369. https://doi.org/10.1002/dep2.117
|
Wang, L. T., 1999. Discussion on Mid-Triassic Ecological Differentiation in Guizhou. Guizhou Geology, 16(1): 17-21 (in Chinese with English abstract).
|
Wilson, J. L., 1975. Carbonate Facies in Geologic History. Springer-Verlag, Berlin, 471.
|
Woods, A. D., 2013. Microbial Ooids and Cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic Microbial Bloom in Shallow Depositional Environments. Global and Planetary Change, 105(4-5): 91-101. https://doi.org/10.1016/j.gloplacha.2012.07.011
|
Xiong, X. Q., Huang, Y. F., Tong, J. N., 2010. Triassic Bivalve Biostratigraphic Sequence in Zunyi, ‚Guizhou Province. Geological Science and Technology Information, 29(6): 7-14 (in Chinese with English abstract).
|
Xu, G. R., 1992. Middle Triassic Dasycladaceae from Bazichang of Guanling, Guizhou Province. Earth Science, 17(5): 503-511 (in Chinese with English abstract).
|
Zhao, X. M., Tong, J. N., Yao, H. Z., et al., 2008. Anachronistic Facies in the Lower Triassic of South China and their Implications to the Ecosystems during the Recovery Time. Science in China Series D: Earth Sciences, 51(11): 1646-1657. https://doi.org/10.1007/s11430-008-0128-y
|
薄婧方, 姚建新, 肖加飞, 等, 2017. 贵州册亨中三叠统坡段组中上部石珊瑚及牙形石生物地层. 地质学报, 91(2): 487-497. doi: 10.3969/j.issn.0001-5717.2017.02.014
|
陈中强, 黄元耕. 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827
|
范嘉松, 吴亚生, 2002. 贵州关岭中三叠统坡段组沉积特征及其形成环境. 古地理学报, 4(1), 67-74+101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200201010.htm
|
冯增昭, 鲍志东, 李尚武, 1997. 中国南方早中三叠世岩相古地理. 石油工业出版社, 北京, 222页. https://cdmd.cnki.com.cn/Article/CDMD-10424-1012277311.htm
|
高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3524. doi: 10.3799/dqkx.2020.382
|
姬国锋, 范鸿, 时志强, 等, 2016. 川西北汉旺地区卡尼期鲕粒灰岩特征及地质意义. 成都理工大学学报(自然科学版), 43(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601007.htm
|
金振奎, 石良, 高白水, 等, 2013. 碳酸盐岩沉积相及相模式. 沉积学报, 31(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306003.htm
|
李飞, 王夏, 薛武强, 等, 2010. 一种新的错时相沉积物-巨鲕及其环境意义. 沉积学报, 28(3): 585-595. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003024.htm
|
李飞, 易楚恒, 李红, 等, 2022. 微生物成因鲕粒研究进展. 沉积学报, 40(2): 319-334. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202202003.htm
|
刘志丽, 童金南. 2001. 中国南方中三叠世地层及沉积古地理分异. 沉积学报, 19(3): 327-332+356. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200103001.htm
|
梅冥相, 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义: 以湖北利川下三叠统大冶组为例. 现代地质, 22(5): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200805001.htm
|
梅冥相, 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201201003.htm
|
时志强, 安红艳, 伊海生, 等, 2011. 上扬子地区早三叠世异常碳酸盐岩的分类与特征. 古地理学报, 13(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201101003.htm
|
沈树忠, 张华, 2017. 什么引起五次生物大灭绝?科学通报, 62(11): 1119-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm
|
宋海军, 童金南, 2016. 二叠纪-三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918. doi: 10.3799/dqkx.2016.077
|
谭睿昶, 李荣, 王垚, 2018. 贵州地区中三叠统垄头组沉积特征及其海平面变化意义. 古地理学报, 20(3): 389-408. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803004.htm
|
谭秀成, 李凌, 刘宏, 等. 2014. 四川盆地中三叠统雷口坡组碳酸盐台地巨型浅滩化研究. 中国科学: 地球科学, 44: 457-471. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403007.htm
|
童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200903019.htm
|
王立亭, 1999. 贵州中三叠世生物生态分异初探. 贵州地质, 16(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199901002.htm
|
熊鑫琪, 黄云飞, 童金南, 2010. 贵州遵义地区早-中三叠世双壳类生物地层研究. 地质科技情报, 29(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006002.htm
|
徐桂荣, 1992. 贵州关岭扒子场中三叠世绒枝藻植物群的发现. 地球科学, 17(5): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199205003.htm
|
赵小明, 童金南, 姚华舟, 等, 2008. 华南早三叠世错时相沉积及其对复苏期生态系的启示. 中国科学: 地球科学, 38(12): 1564-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200812010.htm
|