Citation: | Zhang Xu, Wang Linlin, Cai Suyang, Zhang Jizhen, Li Yu, Wu Chenjun, Zhao Ya, Xiao Qilin, 2024. Effects of Hydrocarbon Generation on the Occurrence of Organic Nanopores during Thermal Maturity of Organic Matters. Earth Science, 49(9): 3292-3305. doi: 10.3799/dqkx.2023.093 |
Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. Ⅰ. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
|
Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
|
Cai, S. Y., Xiao, Q. L., Zhu, W. P., et al., 2021. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin. Acta Sedimentologica Sinica, 39(5): 1100-1110 (in Chinese with English abstract).
|
Chen, J. P., Zhao, C. Y., He, Z. H., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, 24(1): 1-5, 91 (in Chinese with English abstract).
|
Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129: 173-181. https://doi.org/10.1016/j.fuel.2014.03.058
|
Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
|
Dong, C. M., Ma, C. F., Luan, G. Q., et al., 2015. Pyrolysis Simulation Experiment and Diagenesis Evolution Pattern of Shale. Acta Sedimentologica Sinica, 33(5): 1053-1061 (in Chinese with English abstract).
|
Fu, J. M., Qin, K. Z., Wang, Y. F., 1995. Kerogen Geochemistry. Guangdong Science and Technology Press, Guangzhou (in Chinese).
|
Guo, H. J., Jia, W. L., Peng, P. A., et al., 2017. Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis: A Study of the Yanchang Shale with Type Ⅱ Kerogen. Organic Geochemistry, 105: 56-66. https://doi.org/10.1016/j.orggeochem.2017.01.004
|
Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
|
Hu, H. Y., 2013. Porosity Evolution of the Organic-Rich Shale with Thermal Maturity Increasing. Acta Petrolei Sinica, 34(5): 820-825 (in Chinese with English abstract).
|
Hunt, J. M., 1996. Petroleum Geochemistry and Geology (Second Edition). W. H. Freeman and Company, New York.
|
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
|
Ji, L. M., Wu, Y. D., He, C., et al., 2016. High-Pressure Hydrocarbon-Generation Simulation and Pore Evolution Characteristics of Organic-Rich Mudstone and Shale. Acta Petrolei Sinica, 37(2): 172-181 (in Chinese with English abstract).
|
Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract).
|
Ko, L. T., Loucks, R. G., Zhang, T. W., et al., 2016. Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford-Equivalent) Mudrocks: Results from Gold Tube Pyrolysis Experiments. AAPG Bulletin, 100(11): 1693-1722. https://doi.org/10.1306/04151615092
|
Li, C. X., Xiao, Q. L., Chen, Q., et al., 2019. Evolution Characteristics and Controls of Shale Nanopores during Thermal Maturation of Organic Matter. Petroleum Geology & Experiment, 41(6): 901-909 (in Chinese with English abstract).
|
Li, W., Zhu, Y. M., Chen, S. B., et al., 2013. Study of Coupling Mechanism between Hydrocarbon Generation and Structure Evolution in Low Rank Coal. Spectroscopy and Spectral Analysis, 33(4): 1052-1056 (in Chinese with English abstract).
|
Li, X. C., Gao, J. X., Zhang, S., et al., 2022. Combined Characterization of Scanning Electron Microscopy, Pore and Crack Analysis System, and Gas Adsorption on Pore Structure of Coal with Different Volatilization. Earth Science, 47(5): 1876-1889 (in Chinese with English abstract).
|
Liu, B., 2023. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, 48(12): 4641-4657 (in Chinese with English abstract).
|
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
|
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. Bulletin of the American Association of Petroleum Geologists, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
|
Ma, Z. L., Zheng, L. J., Xu, X. H., et al., 2017. Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale. Acta Petrolei Sinica, 38(1): 23-30 (in Chinese with English abstract).
|
Marzec, A., 2002. Towards an Understanding of the Coal Structure: A Review. Fuel Processing Technology, 77-78: 25-32. https://doi.org/10.1016/s0378-3820(02)00045-0
|
Qin, K. Z., 1993. Chemical Change of Kerogen Structure and Hydrocarbon Generation. Journal of Petroleum University (Natural Science Edition), 17(S1): 232-242 (in Chinese with English abstract).
|
Shuai, Y. H., Zhang, S. C., Chen, J. P., 2009. Comparison of the Oil Potential of Coal and Coaly Mudstone. Geochimica, 38(6): 583-590 (in Chinese with English abstract).
|
Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
|
Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9): 1051-1069. https://doi.org/10.1515/pac-2014-1117
|
Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
|
Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases: Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22): 2763-2770. https://doi.org/10.1007/s11434-006-2188-8
|
Tian, X. H., Qu, H. J., Liu, X. S., et al., 2016. Discussion on Quartz Dissolution and Its Mechanisms of the Upper Paleozoic Tight Gas Reservoirs in the Eastern Ordos Basin. Natural Gas Geoscience, 27(11): 2005-2012, 2069 (in Chinese with English abstract).
|
Van Niekerk, D., Mathews, J. P., 2010. Molecular Representations of Permian-Aged Vitrinite-Rich and Inertinite-Rich South African Coals. Fuel, 89(1): 73-82. https://doi.org/10.1016/j.fuel.2009.07.020
|
Wang, Y. P., Tian, J., Lu, J. L., et al., 2008. Residual Hydrocarbon and Its Secondary Cracking Gas Characteristics of Marine and Coal Source Rocks by Using Kinetic Simulation Methods of Hydrocarbon Generation and Expulsion. Marine Origin Petroleum Geology, 13(4): 44-48 (in Chinese with English abstract).
|
Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation: Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6): 553-575. https://doi.org/10.1016/s0146-6380(00)00023-1
|
Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
|
Xiong, Y. Q., Jiang, W. M., Wang, X. T., et al., 2016. Formation and Evolution of Solid Bitumen during Oil Cracking. Marine and Petroleum Geology, 78: 70-75. https://doi.org/10.1016/j.marpetgeo.2016.09.008
|
Yang, R., He, S., Yi, J., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Long-Maxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
|
Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9
|
Yin, S., Ding, W. L., Chen, W. L., et al., 2015. A Review of Evolution Characteristic of Organic Microscopic Fabric and Hydrocarbon Significance of Coalification. Geological Science and Technology Information, 34(2): 145-151, 158 (in Chinese with English abstract).
|
Zhao, W. Z., Wang, Z. Y., Zhang, S. C., et al., 2005. Oil Cracking: An Important Way for Highly Efficient Generation of Gas from Marine Source Rock Kitchen. Chinese Science Bulletin, 50(22): 2628-2635. https://doi.org/10.1360/982004-522
|
Zhao, X. G., Liu, X. Y., Dang, C. T., et al., 1992. Product Characteristics of Simulating Experimemt for Brown Coal Coalification and Its Geochemical Signifcance. Journal of Daqing Petroleum Institute, 16(3): 1-5 (in Chinese with English abstract).
|
Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract).
|
Zou, C. N., Tao, S. Z., Hou, L. H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese).
|
Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8
|
蔡苏阳, 肖七林, 朱卫平, 等, 2021. 川南龙马溪组页岩储层特征及主控因素. 沉积学报, 39(5): 1100-1110.
|
陈建平, 赵长毅, 何忠华, 1997. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, 24(1): 1-5, 91.
|
董春梅, 马存飞, 栾国强, 等, 2015. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 33(5): 1053-1061.
|
傅家谟, 秦匡宗, 王廷芬, 等, 1995. 干酪根地球化学. 广州: 广东科技出版社.
|
胡海燕, 2013. 富有机质Woodford页岩孔隙演化的热模拟实验. 石油学报, 34(5): 820-825.
|
吉利明, 吴远东, 贺聪, 等, 2016. 富有机质泥页岩高压生烃模拟与孔隙演化特征. 石油学报, 37(2): 172-181.
|
贾承造, 郑民, 张永峰, 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136.
|
李楚雄, 肖七林, 陈奇, 等, 2019. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素. 石油实验地质, 41(6): 901-909.
|
李伍, 朱炎铭, 陈尚斌, 等, 2013. 低煤级煤生烃与结构演化的耦合机理研究. 光谱学与光谱分析, 33(4): 1052-1056.
|
李祥春, 高佳星, 张爽, 等, 2022. 基于扫描电镜、孔隙‒裂隙分析系统和气体吸附的煤孔隙结构联合表征. 地球科学, 47(5): 1876-1889. doi: 10.3799/dqkx.2021.195
|
刘贝, 2023. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130
|
马中良, 郑伦举, 徐旭辉, 等, 2017. 富有机质页岩有机孔隙形成与演化的热模拟实验. 石油学报, 38(1): 23-30.
|
秦匡宗, 1993. 干酪根的结构演化与成烃. 石油大学学报(自然科学版), 17(S1): 232-242.
|
帅燕华, 张水昌, 陈建平, 2009. 煤和煤系泥岩生油能力再评价. 地球化学, 38(6): 583-590.
|
田夏荷, 屈红军, 刘新社, 等, 2016. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨. 天然气地球科学, 27(11): 2005-2012, 2069.
|
王云鹏, 田静, 卢家烂, 等, 2008. 利用生排烃动力学研究海相及煤系烃源岩的残留烃及其裂解成气特征. 海相油气地质, 13(4): 44-48.
|
肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248
|
尹帅, 丁文龙, 陈文玲, 等, 2015. 煤化作用过程中有机显微组构演化特征及生烃意义综述. 地质科技情报, 34(2): 145-151, 158.
|
赵锡嘏, 刘晓艳, 党长涛, 等, 1992. 褐煤煤化作用模拟实验产物特征及其地化意义. 大庆石油学院学报, 16(3): 1-5.
|
邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701.
|
邹才能, 陶士振, 侯连华, 等, 2011. 非常规油气地质. 北京: 地质出版社.
|