• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Li Quanhong, Wan Yongge, 2024. Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm. Earth Science, 49(9): 3363-3376. doi: 10.3799/dqkx.2023.096
    Citation: Li Quanhong, Wan Yongge, 2024. Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm. Earth Science, 49(9): 3363-3376. doi: 10.3799/dqkx.2023.096

    Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm

    doi: 10.3799/dqkx.2023.096
    • Received Date: 2022-03-16
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • To gain a deeper understanding of the geological structure in the Maduo region of Qinghai, it is crucial to accurately determine the shapes and parameters of each branch fault planes in the area. Based on the principle that clusters of small earthquakes occur near the fault plane, by using the fuzzy clustering algorithm to cluster the seismic event, the geometry parameters of the fault planes of the 2021 Ms7.4 Qinghai Maduo earthquake sequence are determined. By projecting the stress field in study area onto the obtained fault planes, the relative shear stress and normal stress of each fault plane are obtained. The results show that the overall fault plane of these 2021 Maduo earthquake is mainly distributed on the Kunlun Pass-Jiangcuo fault, with rupture length of 163.71 km, strike of 285.81°, and dip angle of 85.62°. There are obvious bifurcations on the east and west sides of the earthquake distribution area. For the complex fault structure, we made various attempts through the fuzzy clustering algorithm, and obtained the fault plane solution by fuzzy clustering with 6 fault planes. By projecting the tectonic stress field onto the 6 obtained fault planes, we found that the relative shear stress on these fault planes is generally greater than the relative normal stress. Therefore, it is speculated that the earthquake was mainly caused by the tectonic stress field, and the small fault in the north branch at the western end of the bifurcation is the branch rupture caused by the main rupture. Due to the left-lateral strike-slip nature of this rupture, tail extension appeared in the northeastern part of the eastern segment of the fault, resulting in the formation of the 2 small faults on the bifurcation of the eastern segment. The fault parameters obtained by the fuzzy clustering method in this study are also highly consistent with the data of other authors and institutions. This method is an accurate and maneuverable method to obtain fault plane information based on a large amount of seismic sequence data. This method will have important significance for seismic structure, fault plane determination and analysis in the future.

       

    • loading
    • Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2002. Basic Characteristics of Active Tectonics of China. Science in China (Series D), 32(12): 1020-1030, 1057 (in Chinese).
      Evans, W. S., Plesch, A., Shaw, J. H., et al., 2020. A Statistical Method for Associating Earthquakes with Their Source Faults in Southern California. The Bulletin of the Seismological Society of America, 110(1): 213-225. https://doi.org/10.1785/0120190115
      Ha, G. H., Liu, J. R., Ren, Z. K., et al., 2022. The Interpretation of Seismogenic Fault of the Maduo Mw7.3 Earthquake, Qinghai Based on Remote Sensing Images—A Branch of the East Kunlun Fault System. Journal of Earth Science, 33(4): 857-868. https://doi.org/10.1007/s12583-021-1556-2
      Hua, J., Zhao, D. Z., Shan, X. J., et al., 2021. Coseismic Deformation Field, Slip Distribution and Coulomb Stress Disturbance of the 2021 Mw7.3 Maduo Earthquake Using Sentinel-1 InSAR Observations. Seismology and Geology, 43(3): 677-691 (in Chinese with English abstract).
      Li, Z. M., Li, W. Q., Li, T., et al., 2021. Seismogenic Fault and Coseismic Surface Deformation of the Maduo Ms7.4 Earthquake in Qinghai, China: A Quick Report. Seismology and Geology, 43(3): 722-737 (in Chinese with English abstract).
      Liang, M. J., Huang, F. P., Sun, K., et al., 2022. The Holocene Activity and Its Evidence from Paleoearthquake of the Middle Segment of Wudaoliang-Changshagongma Fault Inside the Bayan Har Block. Earth Science, 47(3): 766-778 (in Chinese with English abstract).
      Pan, J. W., Bai, M. K., Li, C., et al., 2021. Coseismic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 Earthquake. Acta Geologica Sinica, 95(6): 1655-1670 (in Chinese with English abstract).
      Wan, Y. G., 2010. Contemporary Tectonic Stress Field in China. Earthquake Science, 23(4): 377-386. https://doi.org/10.1007/s11589-010-0735-5
      Wan, Y. G., 2015. A Grid Search Method for Determination of Tectonic Stress Tensor Using Qualitative and Quantitative Data of Activate Faults and Its Application to the Urumqi Area. Chinese Journal of Geophysics. , 58(9): 3144-3156 (in Chinese with English abstract).
      Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract).
      Wan, Y. G., 2020. Simulation on Relationship between Stress Regimes and Focal Mechanisms of Earthquakes. Chinese Journal of Geophysics, 63(6): 2281-2296 (in Chinese with English abstract).
      Wan, Y. G., Shen, Z. K., Diao, G. L., et al., 2008. An Algorithm of Fault Parameter Determination Using Distribution of Small Earthquakes and Parameters of Regional Stress Field and Its Application to Tangshan Earthquake Sequence. Chinese Journal of Geophysics, 51(3): 793-804 (in Chinese with English abstract).
      Wan, Y. G., Wu, Z. L., Zhou, G. W., et al., 2000. How to Get Rake Angle of the Earthquake Fault from Known Strike and Dip of the Two Nodal Planes. Seismological and Geomagnetic Observation and Research, 21(5): 26-30 (in Chinese with English abstract).
      Wang, F. C., Cao, H. R., Wan, Y. G., 2010. Application of Linear Errors-in-Variables Model for Determination Main Earthquake's Fault Parameters of Wenchuan Earthquake. Journal of Applied Statistics and Management, 29(3): 381-390 (in Chinese with English abstract).
      Wang, F. C., Wan, Y. G., Hu, S. T., 2008, Application of Particle Swarm Optimization to the Estimation of Mainshock Fault Plane Parameters. Journal of Seismological Research, 31(2): 149-154, 198 (in Chinese with English abstract).
      Wang, F. C., Wan, Y. G., Qian, X. S., et al., 2013. A New Method for Determining Fault Planes Parameters According to Earthquake Clustering. Chinese Journal of Geophysics, 56(2): 522-530 (in Chinese with English abstract).
      Wang, M., Wang, P. D., 1992. Focal Mechanism and Seismogenic Structure of Datong Yanggao Earthquake on October 18, 1989. Acta Seismologica Sinica, 14(4): 407-415 (in Chinese with English abstract).
      Wang, W. L., Fang, L. H., Wu, J. P., et al., 2021. Study on Precise Location of Maduo Ms7.4 Earthquake Sequence in Qinghai in 2021. Science in China (Series D), 51(7): 1193-1202 (in Chinese with English abstract).
      Wang, W. P., Yang, J. S., Wang, Y. B., 2020. Seismic Sequences of the 2017 Mainling Mw 6.5 Earthquake: Imaging the Seismogenic Fault by Aftershock Analysis. Pure and Applied Geophysics, 177(7): 3161-3174. https://doi.org/10.1007/s00024-020-02422-2
      Xiao, L. H., Zheng, R., Zou, R., 2022. Coseismic Slip Distribution of the 2021 Mw7.4 Maduo, Qinghai Earthquake Estimated from InSAR and GPS Measurements. Journal of Earth Science, 33(4): 885-891. https://doi.org/10.1007/s12583-022-1637-x
      Xiong, X., 2022. What is the Mechanism to Control the Spatial Distribution of Earthquakes within the Continent? Earth Science, 47(10): 3906-3907 (in Chinese).
      Zhan, Y., Liang, M. J., Sun, X. Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021. 5. 22 Madoi (Qinghai) Ms7.4 Earthquake. Chinese Journal of Geophysics, 64(7): 2232-2252 (in Chinese with English abstract).
      Zhang, G. W., Lei, J. S., Xie, F. R., et al., 2011. Precise Relocation of Small Earthquakes Occurred in North China and Its Tectonic Implication. Acta Seismologica Sinica, 33(6): 699-714, 843 (in Chinese with English abstract).
      Zhang, J. Y., Wang, X., Chen, L., et al., 2022. Seismotectonics and Fault Geometries of the Qinghai Madoi Ms7.4 Earthquake Sequence: Insight from Aftershock Relocations and Focal Mechanism Solutions. Chinese Journal of Geophysics, 65(2): 552-562 (in Chinese with English abstract).
      Zhang, L. J., Wan, Y. G, Wang, F. C., et al., 2022. Geometry of Seismogenic Faults of the 2021 Yangbi Earthquake Sequence Determined by Fuzzy Clustering Algorithm. Seismology and Geology, 44(6): 1634-1647 (in Chinese with English abstract).
      Zhang, Z., Xu, L. S., 2021. The Centroid Moment Tensor Solution of the 2021 Mw7.5 Maduo, Qinghai, Earthquake. Acta Seismologica Sinica, 43(3): 387-391 (in Chinese with English abstract).
      Zhang, Z. P., Li, J., Feng, B., et al., 2022. Precise Location and Focal Mechanism Solutions of the 2021 Maduo, Qinghai Ms7.4 Earthquake Sequence. China Earthquake Engineering Journal, 44(1): 218-226 (in Chinese with English abstract).
      邓起东, 张培震, 冉勇康, 等, 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020-1030, 1057.
      华俊, 赵德政, 单新建, 等, 2021. 2021年青海玛多Mw7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动. 地震地质, 43(3): 677-691.
      李智敏, 李文巧, 李涛, 等, 2021. 2021年5月22日青海玛多Ms7.4地震的发震构造和地表破裂初步调查. 地震地质, 43(3): 722-737.
      梁明剑, 黄飞鹏, 孙凯, 等, 2022. 巴颜喀拉块体内部五道梁‒长沙贡玛断裂中段全新世活动及最新古地震证据. 地球科学, 47(3): 766-778.
      潘家伟, 白明坤, 李超, 等, 2021. 2021年5月22日青海玛多Ms7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655-1670.
      万永革, 2015. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用. 地球物理学报, 58(9): 3144-3156.
      万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728.
      万永革, 2020. 震源机制与应力体系关系模拟研究. 地球物理学报, 63(6): 2281-2296.
      万永革, 沈正康, 刁桂苓, 等, 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 51(3): 793-804.
      万永革, 吴忠良, 周公威, 等, 2000. 根据震源的两个节面的走向角和倾角求滑动角. 地震地磁观测与研究, 21(5): 26-30.
      王福昌, 曹慧荣, 万永革, 2010. 线性Errors-in-Variables模型在确定汶川地震主震断层面中的应用. 数理统计与管理, 29(3): 381-390.
      王福昌, 万永革, 胡顺田, 2008. 粒子群算法在主震断层面参数估计中的应用, 地震研究, 31(2): 149-154, 198.
      王福昌, 万永革, 钱小仕等, 2013. 由地震分布丛集性给出断层参数的一种新方法. 地球物理学报, 56(2): 522-530.
      王鸣, 王培德, 1992. 1989年10月18日大同‒阳高地震的震源机制和发震构造. 地震学报, 14(4): 407-415.
      王未来, 房立华, 吴建平, 等, 2021.2021年青海玛多Ms7.4地震序列精定位研究. 中国科学(D辑), 51(7): 1193-1202.
      熊熊, 2022. 控制大陆内部地震空间分布的机制是什么? 地球科学, 47(10): 3906-3907. doi: 10.3799/dqkx.2022.859
      詹艳, 梁明剑, 孙翔宇, 等, 2021. 2021年5月22日青海玛多Ms7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232-2252.
      张广伟, 雷建设, 谢富仁, 等, 2011. 华北地区小震精定位及构造意义. 地震学报, 33(6): 699-714, 843.
      张建勇, 王新, 陈凌, 等, 2022. 基于余震重定位和震源机制解研究青海玛多Ms7.4地震序列的发震构造和断裂形态. 地球物理学报, 65(2): 552-562.
      张丽娟, 万永革, 王福昌, 等, 2022. 采用模糊聚类算法确定2021年漾濞地震序列的断层结构. 地震地质, 44(6) : 1634-1647.
      张喆, 许力生, 2021. 2021年青海玛多Mw7.5地震矩心矩张量解. 地震学报, 43(3): 387-391.
      张志朋, 李君, 冯兵, 等, 2022. 2021年青海玛多Ms7.4地震序列精定位与震源机制研究. 地震工程学报, 44(1): 218-226.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (279) PDF downloads(25) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return