Citation: | Cai Quansheng, Hu Mingyi, Yang Zhi, Qiu Xiaosong, Zhang Baomin, Li Hai, Hu Zhonggui, Deng Qingjie, 2024. Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng-Longmaxi Formations in Foreland Depression, Western Hunan Province: An Example from Well TD2 in Changde Area. Earth Science, 49(7): 2330-2345. doi: 10.3799/dqkx.2023.098 |
Algeo, T. J., Liu, J. S., 2020. A Re-Assessment of Elemental Proxies for Paleoredox Analysis. Chemical Geology, 540: 119549. https://doi.org/10.1016/j.chemgeo.2020.119549
|
Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004PA001112
|
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
|
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
|
Cai, Q. S., Chen, X. H., Zhang, G. T., et al., 2021. Characteristics and Exploration Potential of the Wufeng-Longmaxi Shale Gas Reservoirs of Lower Paleozoic in Yichang Area, Western Hubei Province, China. Oil & Gas Geology, 42(1): 107-123 (in Chinese with English abstract).
|
Cai, Q. S., Hu, M. Y., Kane, O. I., et al., 2022a. Cyclic Variations in Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian Black Shale in the Middle Yangtze Region, South China: Implications for Tectonic Setting, Paleoclimate, and Sea-Level Change. Marine and Petroleum Geology, 136: 105477. https://doi.org/10.1016/j.marpetgeo.2021.105477
|
Cai, Q. S., Hu, M. Y., Zhang, B. M., et al., 2022b. Source of Silica and Its Implications for Organic Matter Enrichment in the Upper Ordovician-Lower Silurian Black Shale in Western Hubei Province, China: Insights from Geochemical and Petrological Analysis. Petroleum Science, 19(1): 74-90. https://doi.org/10.1016/j.petsci.2021.10.012
|
Chen, Q., Fan, J. X., Zhang, L. N., et al., 2018. Paleogeographic Evolution of the Lower Yangtze Region and the Break of the "Platform-Slope-Basin" Pattern during the Late Ordovician. Scientia Sinica Terrae, 48(6): 767-777 (in Chinese). doi: 10.1360/N072018-00002
|
Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. Circumjacent Distribution Pattern of the Lungmachian Graptolitic Black Shale (Early Silurian) on the Yichang Uplift and Its Peripheral Region. Scientia Sinica Terrae, 48(9): 1198-1206 (in Chinese). doi: 10.1360/N072017-00445
|
Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3
|
Dong, D. Z., Shi, Z. S., Guan, Q. Z., et al., 2018. Progress, Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(5): 415-424. https://doi.org/10.1016/j.ngib.2018.04.011
|
Fan, J. X., Melchin, M. J., Chen, X., et al., 2011. Biostratigraphy and Geography of the Ordovician-Silurian Lungmachi Black Shales in South China. Science China Earth Sciences, 54(12): 1854-1863. https://doi.org/10.1007/s11430-011-4301-3
|
Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648
|
Huang, H. Y., He, D. F., Li, D., et al., 2020. Geochemical Characteristics of Organic-Rich Shale, Upper Yangtze Basin: Implications for the Late Ordovician-Early Silurian Orogeny in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109822. https://doi.org/10.1016/j.palaeo.2020.109822
|
Huang, H. Y., He, D. F., Li, Y. Q., et al., 2018. Silurian Tectonic-Sedimentary Setting and Basin Evolution in the Sichuan Area, Southwest China: Implications for Palaeogeographic Reconstructions. Marine and Petroleum Geology, 92: 403-423. https://doi.org/10.1016/j.marpetgeo.2017.11.006
|
Li, Q. Q., Lan, B. F., Li, G. Q., et al., 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188 (in Chinese with English abstract).
|
Liu, C. S., Guo, J. H., Wang, Z. X., 2019. Potential for Shale Gas Exploration of Xuefengshan Foreland Basin of Lower Silurian. Earth Science, 44(11): 3678-3691 (in Chinese with English abstract).
|
Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeography, Palaeoclimatology, Palaeoecology, 466(6): 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007
|
Lu, X. Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract).
|
Malekzadeh, M., Hosseini-Barzi, M., Sadeghi, A., et al., 2020. Geochemistry of Asara Shale Member of Karaj Formation, Central Alborz, Iran: Provenance, Source Weathering and Tectonic Setting. Marine and Petroleum Geology, 121: 104584. https://doi.org/10.1016/j.marpetgeo.2020.104584
|
McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
|
Munnecke, A., Calner, M., Harper, D. A. T., et al., 2010. Ordovician and Silurian Sea-Water Chemistry, Sea Level, and Climate: A Synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3-4): 389-413. https://doi.org/10.1016/j.palaeo.2010.08.001
|
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
|
Nie, H. K., Li, P., Dang, W., et al., 2022. Enrichment Characteristics and Exploration Directions of Deep Shale Gas of Ordovician-Silurian in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 49(4): 648-659 (in Chinese with English abstract).
|
Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3-4): 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
|
Qin, M. Y., Guo, J. H., He, H. S., et al., 2018. Geological Conditions and Gas-Bearing Characteristics of Shale Gas in Complex Structure Area out of Sichuan Basin: A Case of Wufeng-Longmaxi Formation in Northwestern Hunan, China. Journal of Central South University (Science and Technology), 49(8): 1979-1990 (in Chinese with English abstract).
|
Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English abstract).
|
Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029
|
Sageman, B. B., Murphy, A. E., Werne, J. P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1-4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2
|
Shao, J. Q., Yang, S. Y., Li, C., 2012. Chemical Indices (CIA and WIP) as Proxies for Integrated Chemical Weathering in China: Inferences from Analysis of Fluvial Sediments. Sedimentary Geology, 265-266: 110-120. https://doi.org/10.1016/j.sedgeo.2012.03.020
|
Sweere, T., van den Boorn, S., Dickson, A. J., et al., 2016. Definition of New Trace-Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn, Co, Mo and Cd Concentrations. Chemical Geology, 441: 235-245. https://doi.org/10.1016/j.chemgeo.2016.08.028
|
Su, W. B., Li, Z. M., Shi, X. Y., et al., 2006. K-Bentonites and Black Shales from the Wufeng-Longmaxi Formations (Early Paleozoic, South China) and Xiamaling Formation (Early Neoproterozoic, North China)-Implications for Tectonic Processes during Two Important Transitions. Earth Science Frontiers, 13(6): 82-95 (in Chinese with English abstract).
|
Taylor, S., McLennan, S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
Wang, G. X., Zhan, R. B., Percival, I. G., 2019. The End-Ordovician Mass Extinction: A Single-Pulse Event? Earth-Science Reviews, 192: 15-33. https://doi.org/10.1016/j.earscirev.2019.01.023
|
Wang, H. Y., Shi, Z. S., Sun, S. S., 2021. Biostratigraphy and Reservoir Characteristics of the Ordovician Wufeng Formation-Silurian Longmaxi Formation Shale in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 48(5): 1019-1032. https://doi.org/10.1016/s1876-3804(21)60088-5
|
Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
|
Wang, Y., Rong, J. Y., Zhan, R. B., et al., 2013. On the Ordovician-Silurian Boundary Strata in Southwestern Hubei, and the Yichang Uplift. Journal of Stratigraphy, 37(3): 264-274 (in Chinese with English abstract).
|
Wang, Y. M., Dong, D. Z., Li, X. J., et al., 2015. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2(2-3): 222-232. https://doi.org/10.1016/j.ngib.2015.07.014
|
Xiao, B., Liu, S. G., Ran, B., et al., 2021. Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China. Earth Science, 46(7): 2449-2465 (in Chinese with English abstract).
|
Zhang, L. N., Fan, J. X., Chen, Q., 2016. Geographic Distribution and Palaeogeographic Reconstruction of the Upper Ordovician Kuanyinchiao Bed in South China. Chinese Science Bulletin, 61(18): 2053-2063 (in Chinese). doi: 10.1360/N972015-00981
|
Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7): 599-602. https://doi.org/10.1130/g30961.1
|
Yao, W. H., Li, Z. X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012
|
Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
|
蔡全升, 陈孝红, 张国涛, 等, 2021. 鄂西宜昌地区下古生界五峰组‒龙马溪组页岩气储层发育特征与勘探潜力. 石油与天然气地质, 42(1): 107-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101011.htm
|
陈清, 樊隽轩, 张琳娜, 等, 2018. 下扬子区奥陶纪晚期古地理演变及华南"台‒坡‒盆" 格局的打破. 中国科学: 地球科学, 48(6): 767-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201806009.htm
|
陈旭, 陈清, 甄勇毅, 等, 2018. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式. 中国科学: 地球科学, 48(9): 1198-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809006.htm
|
李琪琪, 蓝宝锋, 李刚权, 等, 2021. 黔中隆起北缘五峰‒龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
|
刘辰生, 郭建华, 王宗秀, 2019. 雪峰山前陆盆地下志留统页岩气勘探潜力. 地球科学, 44(11): 3678-3691. doi: 10.3799/dqkx.2019.208
|
卢贤志, 沈俊, 郭伟, 等, 2021. 中上扬子地区奥陶纪‒志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258
|
聂海宽, 李沛, 党伟, 等, 2022. 四川盆地及周缘奥陶系‒志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm
|
秦明阳, 郭建华, 何红生, 等, 2018. 四川盆地外复杂构造区页岩气地质条件及含气性特征: 以湘西北五峰组‒龙马溪组为例. 中南大学学报(自然科学版), 49(8): 1979-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808019.htm
|
邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101001.htm
|
苏文博, 李志明, 史晓颖, 等, 2006. 华南五峰组‒龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系——两个地史转折期板块构造运动的沉积响应. 地学前缘, 13(6): 82-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606013.htm
|
王怿, 戎嘉余, 詹仁斌, 等, 2013. 鄂西南奥陶系‒志留系交界地层研究兼论宜昌上升. 地层学杂志, 37(3): 264-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201303003.htm
|
肖斌, 刘树根, 冉波, 等, 2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究. 地球科学, 46(7): 2449-2465. doi: 10.3799/dqkx.2020.208
|
张琳娜, 樊隽轩, 陈清, 2016. 华南上奥陶统观音桥层的空间分布和古地理重建. 科学通报, 61(18): 2053-2063. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201618009.htm
|