• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Li Jialong, Kang Fengxin, Bai Tong, Zhang Pingping, Li Zhenhan, Zhao Qiang, 2024. Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters. Earth Science, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099
    Citation: Li Jialong, Kang Fengxin, Bai Tong, Zhang Pingping, Li Zhenhan, Zhao Qiang, 2024. Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters. Earth Science, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099

    Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters

    doi: 10.3799/dqkx.2023.099
    • Received Date: 2022-12-22
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • The evolution of geo-temperature within the geothermal reservoir induced by reinjection of geothermal cooled water is of great importance for the sustainable utilization of geothermal resources. This study focuses on examining the quantitative relationship between reinjection parameters and the thermal breakthrough time of production wells. A simulation test using a large sand tank combined with numerical simulation methods was conducted. Permeation tests, tracer tests, and reinjection tests were performed in the simulation test model. Additionally, sensitivity analysis and nonlinear fitting were carried out to discuss the impact of fluid viscosity and density on reinjection results, as well as the degree of influence of reinjection parameters on the thermal breakthrough time of production wells and its underlying mechanisms and principles. The results show that the migration speed of reinjection water is different in sand reservoirs with different permeability, and the thermal breakthrough time t is linearly correlated with Q‒0.85, ΔT‒0.21, and R1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection ΔT is more than 30 ℃, the influence of ΔT on the thermal breakthrough time of production well becomes weak, because ΔT exerts an effect on the thermal breakthrough time of production well t by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region, and the error for reinjection from high temperature fluid to low temperature fluid can be corrected by introducing the viscosity correction coefficient αμ.

       

    • loading
    • Bedre, M. G., Anderson, B. J., 2012. Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy. Transactions-Geothermal Resources Council, 36 2: 1255-1261
      Bodvarsson, G., 1972. Thermal Problems in the Siting of Reinjection Wells. Geothermics, 1(2): 63-66. https://doi.org/10.1016/0375-6505(72)90013-2
      Franco, A., Vaccaro, M., 2014. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renewable and Sustainable Energy Reviews, 30: 987-1002. https://doi.org/10.1016/j.rser.2013.11.041
      Ganguly, S., Mohan Kumar, M. S., 2014. Analytical Solutions for Transient Temperature Distribution in a Geothermal Reservoir Due to Cold Water Injection. Hydrogeology Journal, 22(2): 351-369. https://doi.org/10.1007/s10040-013-1048-2
      He, M. C., Liu, B., Yao, L. H., et al., 2003. Study on the Theory of Seepage Field for Geothermal Single Well Reinjection. Acta Energiae Solaris Sinica, 24(2): 197-201 (in Chinese with English abstract). doi: 10.3321/j.issn:0254-0096.2003.02.012
      Kang, F. X., 2018. Comprehensive Evaluation of Geothermal Clean Energy in Shandong Province. Science Press, Beijing (in Chinese).
      Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023a. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract).
      Kang, F. X., Zhao, J. C., Huang, X., et al., 2023b. Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression. Earth Science, 48(3): 1080-1092 (in Chinese with English abstract).
      Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica-English Edition, 95(6): 1870-1881. https://doi.org/10.1111/ 1755-6724.14877 doi: 10.1111/1755-6724.14877
      Lei, H. Y., Zhu, J. L., 2010. Modeling of Exploitation and Reinjection of Porous Medium Geothermal Reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638 (in Chinese with English abstract).
      Liu, Z. T., Liu, S., Song, W. H., 2019. Change Characteristics of Geothermal Field for Geothermal Return Water Reinjection of Sandstone Reservoir in the Northern Shangdong. Acta Geologica Sinica, 93(S1): 149-156 (in Chinese with English abstract). doi: 10.1111/1755-6724.13999
      Mottaghy, D., Pechnig, R., Vogt, C., 2011. The Geothermal Project Den Haag: 3D Numerical Models for Temperature Prediction and Reservoir Simulation. Geothermics, 40(3): 199-210. https://doi.org/10.1016/j.geothermics.2011.07.001
      Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., 2016. A Review of Modeling Thermal Displacement Processes in Porous Media. Arabian Journal for Science and Engineering, 41(12): 4719-4741. https://doi.org/10.1007/s13369-016-2265-5
      Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2014. Experimental-Numerical Study of Heat Flow in Deep Low-Enthalpy Geothermal Conditions. Renewable Energy, 62: 716-730. https://doi.org/10.1016/j.renene.2013.08.037
      Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2015. A Prototype Design Model for Deep Low-Enthalpy Hydrothermal Systems. Renewable Energy, 77: 408-422. https://doi.org/10.1016/j.renene.2014.12.018
      Sauty, J. P., Gringarten, A. C., Landel, P. A., et al., 1980. Lifetime Optimization of Low Enthalpy Geothermal Doublets. Advances in European Geothermal Research. Springer, Dordrecht, 706-719. https://doi.org/10.1007/978-94-009-9059-3_64
      Seibt, P., Kellner, T., 2003. Practical Experience in the Reinjection of Cooled Thermal Waters Back into Sandstone Reservoirs. Geothermics, 32(4-6): 733-741. https://doi.org/10.1016/s0375-6505(03)00071-3
      Sippel, J., Fuchs, S., Cacace, M., et al., 2013. Deep 3D Thermal Modelling for the City of Berlin (Germany). Environmental Earth Sciences, 70(8): 3545-3566. https://doi.org/10.1007/s12665-013-2679-2
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Wu, L. J., Zhao, J. C., Li, A. Y., et al., 2016. Key Issues of Geothermal Resource Exploitation and Utilization in the Depression Area of Northern Shandong Province. Geology and Exploration, 52(2): 300-306 (in Chinese with English abstract).
      Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract).
      Zhao, J. C., 2013. Lubei Geothermal Tail Water Reinjection Experiments in Sandstone Reservoir. Shandong Land and Resources, 29(9): 23-30 (in Chinese with English abstract).
      Zhu, J. L., Zhu, X. M., Lei, H. Y., 2012. Analysis of Impact of Pressure Compensation between Geothermal Wells on Reinjection Effeciency. Acta Energiae Solaris Sinica, 33(1): 56-62 (in Chinese with English abstract).
      何满潮, 刘斌, 姚磊华, 等, 2003. 地热单井回灌渗流场理论研究. 太阳能学报, 24(2): 197-201. doi: 10.3321/j.issn:0254-0096.2003.02.012
      康凤新, 2018. 山东省地热清洁能源综合评价. 北京: 科学出版社.
      康凤新, 史启朋, 马哲民, 等, 2023a. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例. 地质学报, 97(1): 221-237.
      康凤新, 赵季初, 黄迅, 等, 2023b. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力. 地球科学, 48(3): 1080-1092. doi: 10.3799/dqkx.2022.324
      雷海燕, 朱家玲, 2010. 孔隙型地热采灌开发方案的数值模拟研究. 太阳能学报, 31(12): 1633-1638.
      刘志涛, 刘帅, 宋伟华, 等, 2019. 鲁北地区砂岩热储地热尾水回灌地温场变化特征分析. 地质学报, 93(S1): 149-156.
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      吴立进, 赵季初, 李艾银, 等, 2016. 鲁北坳陷区地热资源开发利用关键性问题研究. 地质与勘探, 52(2): 300-306.
      徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
      赵季初, 2013. 鲁北砂岩热储地热尾水回灌试验研究. 山东国土资源, 29(9): 23-30.
      朱家玲, 朱晓明, 雷海燕, 2012. 地热回灌井间压差补偿对回灌效率影响的分析. 太阳能学报, 33(1): 56-62.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(27)  / Tables(5)

      Article views (416) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return