• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Hou Yusong, Liu Su, Xin Hu, Wu Jichun, Hu Xiaonong, Xing Liting, 2024. Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater. Earth Science, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107
    Citation: Hou Yusong, Liu Su, Xin Hu, Wu Jichun, Hu Xiaonong, Xing Liting, 2024. Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater. Earth Science, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107

    Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater

    doi: 10.3799/dqkx.2023.107
    • Received Date: 2022-06-21
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • The study of groundwater pore-scale flow field characteristics is of great significance for the in-depth understanding of groundwater seepage and solute transport. However, the effect of the microstructure of porous media with different particle size characteristics on the pore-scale flow field is yet unclear. This paper constructs porous media with different particle size distribution characteristics and swelling degrees of solid particles using an iterative rearrangement algorithm. On this basis, the effects of the average particle size, particle size variance and solid particle swelling degrees on the characteristics of groundwater flow field are investigated. The results show that under the condition of the same porosity of the porous media, the mean particle size and particle size variance of solid grains have less influence on the flow field characteristics such as the heterogeneity and probability density distribution of flow velocity in porous media. However, in the same medium, when the expansion of solid particles causes a reduction in porosity, a smaller change in average particle size can have a significant effect on the above flow field characteristics. For example, when the expansion degree of solid particles increases, a slight increase in particle size will lead to a large rise in the proportion of the dominant flow area and the stagnant region at the same time, a significant enhancement in the heterogeneity of flow field, and a significant growth in the divergence degree of the flow velocity probability density distribution.

       

    • loading
    • Aziz, R., Niasar, V., Erfani, H., et al., 2020. Impact of Pore Morphology on Two-Phase Flow Dynamics under Wettability Alteration. Fuel, 268: 117315. https://doi.org/10.1016/j.fuel.2020.117315
      Bijeljic, B., Mostaghimi, P., Blunt, M. J., 2013a. Insights into Non-Fickian Solute Transport in Carbonates. Water Resources Research, 49(5): 2714-2728. https://doi.org/10.1002/wrcr.20238
      Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013b. Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images. Physical Review E, 87: 013011. https://doi.org/10.1103/physreve.87.013011
      Chai, B., Shi, X. S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646 (in Chinese with English abstract).
      Chen, S. B., Gong, Z., Li, X. Y., et al., 2021. Pore Structure and Heterogeneity of Shale Gas Reservoirs and Its Effect on Gas Storage Capacity in the Qiongzhusi Formation. Geoscience Frontiers, 12(6): 101244. https://doi.org/10.1016/j.gsf.2021.101244
      Dentz, M., Cortis, A., Scher, H., et al., 2004. Time Behavior of Solute Transport in Heterogeneous Media: Transition from Anomalous to Normal Transport. Advances in Water Resources, 27(2): 155-173. https://doi.org/10.1016/j.advwatres.2003.11.002
      Di Palma, P. R., Parmigiani, A., Huber, C., et al., 2017. Pore-Scale Simulations of Concentration Tails in Heterogeneous Porous Media. Journal of Contaminant Hydrology, 205: 47-56. https://doi.org/10.1016/j.jconhyd.2017.08.003
      Dou, Z., Chen, Z., Zhou, Z. F., et al., 2018. Influence of Eddies on Conservative Solute Transport through a 2D Single Self-Affine Fracture. International Journal of Heat and Mass Transfer, 121: 597-606. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.037
      Edery, Y., Guadagnini, A., Scher, H., et al., 2014. Origins of Anomalous Transport in Heterogeneous Media: Structural and Dynamic Controls. Water Resources Research, 50(2): 1490-1505. https://doi.org/10.1002/2013wr015111
      Hochstetler, D. L., Rolle, M., Chiogna, G., et al., 2013. Effects of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes: Insights from Pore-Scale Simulations and Darcy-Scale Experiments. Advances in Water Resources, 54: 1-10. https://doi.org/10.1016/j.advwatres.2012.12.007
      Hou, Y. S., Jiang, J. G., Wu, J. C., 2018. Anomalous Solute Transport in Cemented Porous Media: Pore-Scale Simulations. Soil Science Society of America Journal, 82(1): 10-19. https://doi.org/10.2136/sssaj2017.04.0125
      Hou, Y. S., Wu, J. C., Jiang, J. G., 2019. Time Behavior of Anomalous Solute Transport in Three-Dimensional Cemented Porous Media. Soil Science Society of America Journal, 83(4): 1012-1023. https://doi.org/10.2136/sssaj2018.12.0476
      Hui, W., Xue, Y. Z., Bai, X. L., et al., 2020. Influence of Micro-Pore Structure on the Movable Fluid Occurrence in Tight Sandstone Reservoir. Special Oil & Gas Reservoirs, 27(2): 87-92 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2020.02.013
      Lee, J., Rolle, M., Kitanidis, P. K., 2018. Longitudinal Dispersion Coefficients for Numerical Modeling of Groundwater Solute Transport in Heterogeneous Formations. Journal of Contaminant Hydrology, 212: 41-54. https://doi.org/10.1016/j.jconhyd.2017.09.004
      Li, X., 2018. Study on the Expansion Characteristics of Neogene System in Xining Basin (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Li, Z. X., Wan, J. W., Huang, K., et al., 2017. Effects of Particle Diameter on Flow Characteristics in Sand Columns. International Journal of Heat and Mass Transfer, 104: 533-536. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.085
      Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2019. Particle Size Distribution on Forchheimer Flow and Transition of Flow Regimes in Porous Media. Journal of Hydrology, 574: 1-11. https://doi.org/10.1016/j.jhydrol.2019.04.026
      Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2020. An Energy Perspective of Pore Scale Simulation and Experimental Evidence of Fluid Flow in a Rough Conduit. Journal of Hydrology, 587: 125010. https://doi.org/10.1016/j.jhydrol.2020.125010
      Liu, Y., Zhang, Q., Qian, J. Z., et al., 2022. Simulation of Bimolecular Reactive Solute Transport in Porous Media via Image Analysis. Earth Science Frontiers, 29(3): 248-255 (in Chinese with English abstract).
      Molins, S., Trebotich, D., Steefel, C. I., et al., 2012. An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation. Water Resources Research, 48(3): W03527. https://doi.org/10.1029/2011wr011404
      Qiao, J. C., Zeng, J. H., Ma, Y., et al., 2020. Effects of Mineralogy on Pore Structure and Fluid Flow Capacity of Deeply Buried Sandstone Reservoirs with a Case Study in the Junggar Basin. Journal of Petroleum Science and Engineering, 189: 106986. https://doi.org/10.1016/j.petrol.2020.106986
      Rolle, M., Kitanidis, P. K., 2014. Effects of Compound- Specific Dilution on Transient Transport and Solute Breakthrough: A Pore-Scale Analysis. Advances in Water Resources, 71: 186-199. https://doi.org/10.1016/j.advwatres.2014.06.012
      Sánchez-Vila, X., Carrera, J., 2004. On the Striking Similarity between the Moments of Breakthrough Curves for a Heterogeneous Medium and a Homogeneous Medium with a Matrix Diffusion Term. Journal of Hydrology, 294(1-3): 164-175. https://doi.org/10.1016/j.jhydrol.2003.12.046
      Sharma, P. K., Agarwal, P., Mehdinejadiani, B., 2022. Study on Non-Fickian Behavior for Solute Transport through Porous Media. ISH Journal of Hydraulic Engineering, 28(sup1): 171-179. https://doi.org/10.1080/09715010.2020.1727783
      Srzic, V., Cvetkovic, V., Andricevic, R., et al., 2013. Impact of Aquifer Heterogeneity Structure and Local-Scale Dispersion on Solute Concentration Uncertainty. Water Resources Research, 49(6): 3712-3728. https://doi.org/10.1002/wrcr.20314
      Wang, L. G., Zhang, Y. Z., Zhang, N. Y., et al., 2020. Pore Structure Characterization and Permeability Estimation with a Modified Multimodal Thomeer Pore Size Distribution Function for Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 193: 107426. https://doi.org/10.1016/j.petrol.2020.107426
      Wang, L. L., Wang, Z. T., Ding, Z. P., et al., 2022. Factors Influencing Accuracy of Free Swelling Ratio of Expansive Soil. Journal of Central South University, 29(5): 1653-1662. https://doi.org/10.1007/s11771-022-4986-9
      Wei, H. X., Lai, F. P., Jiang, Z. Y., et al., 2020. Micropore Structure and Fluid Distribution Characteristics of Yanchang Tight Gas Reservoir. Fault-Block Oil & Gas Field, 27(2): 182-187 (in Chinese with English abstract).
      Werth, C. J., Cirpka, O. A., Grathwohl, P., 2006. Enhanced Mixing and Reaction through Flow Focusing in Heterogeneous Porous Media. Water Resources Research, 42(12): W12414. https://doi.org/10.1029/2005wr004511
      Willingham, T., Zhang, C. Y., Werth, C. J., et al., 2010. Using Dispersivity Values to Quantify the Effects of Pore-Scale Flow Focusing on Enhanced Reaction along a Transverse Mixing Zone. Advances in Water Resources, 33(4): 525-535. https://doi.org/10.1016/j.advwatres.2010.02.004
      Wirner, F., Scholz, C., Bechinger, C., 2014. Geometrical Interpretation of Long-Time Tails of First-Passage Time Distributions in Porous Media with Stagnant Parts. Physical Review E, 90(1): 013025. https://doi.org/10.1103/physreve.90.013025
      Xu, P., Li, C. H., Liu, H. C., et al., 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378 (in Chinese with English abstract).
      Xue, J. F., Qi, Z. W., Chen, J. L., et al., 2023. Dynamic of Soil Porosity and Water Content under Tillage during Summer Fallow in the Dryland Wheat Fields of the Loess Plateau in China. Land, 12(1): 230. https://doi.org/10.3390/land12010230
      Yang, A., Miller, C. T., Turcoliver, L. D., 1996. Simulation of Correlated and Uncorrelated Packing of Random Size Spheres. Physical Review E, 53(2): 1516-1524. https://doi.org/10.1103/physreve.53.1516
      Yao, L. L., 2021. Evaluation of Microscopic Pore Structure Characteristics and Flow Mechanism of Shale Oil Reservoirs (Dissertation). Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang (in Chinese with English abstract).
      Zhang, X. Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract).
      Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract).
      Zhou, K., Chen, X. P., Qu, X. B., 2022. Determining Methods of Micro-Pore and Liquids and Adsorption- Desorption Experiment for Shale Reservoir: Taking Member He-8 Reservoir in Ordos Yulin Area as an Example. Petroleum Geology & Oilfield Development in Daqing, 41(2): 139-146 (in Chinese with English abstract).
      Zhu, Y. H., Zhan, H. B., Jin, M. G., 2016. Analytical Solutions of Solute Transport in a Fracture-Matrix System with Different Reaction Rates for Fracture and Matrix. Journal of Hydrology, 539: 447-456. https://doi.org/10.1016/j.jhydrol.2016.05.056
      柴波, 史绪山, 杜娟, 等, 2022. 如何实现区域岩体结构精细化分析?综述与设想. 地球科学, 47(12): 4629-4646. doi: 10.3799/dqkx.2022.108
      惠威, 薛宇泽, 白晓路, 等, 2020. 致密砂岩储层微观孔隙结构对可动流体赋存特征的影响. 特种油气藏, 27(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002013.htm
      李先, 2018. 西宁盆地新近系泥岩膨胀特性研究(硕士学位论文). 成都: 西南交通大学
      刘咏, 张琪, 钱家忠, 等, 2022. 基于图像法的多孔介质双分子反应溶质运移模拟. 地学前缘, 29(3): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203022.htm
      魏赫鑫, 赖枫鹏, 蒋志宇, 等, 2020. 延长致密气储层微观孔隙结构及流体分布特征. 断块油气田, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm
      徐鹏, 李翠红, 柳海成, 等, 2017. 多尺度多孔介质有效气体输运参数的分形特征. 地球科学, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
      姚兰兰, 2021. 页岩油储层微观孔隙结构特征评价及渗流机理研究(硕士学位论文). 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所).
      张学羿, 窦智, 2018. 黏土微观孔隙结构对可溶性污染物运移的影响. 水文地质工程地质, 45(4): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804023.htm
      赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212
      周凯, 陈西泮, 屈兴勃, 2022. 页岩储层微观孔隙、流体测定方法及吸附‒解吸实验——以鄂尔多斯榆林地区盒8段储层为例. 大庆石油地质与开发, 41(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202202019.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (476) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return