• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Zheng Defeng, Gao Min, Yan Chenglin, Li Yuanyuan, Nian Tingkai, 2024. Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province. Earth Science, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113
    Citation: Zheng Defeng, Gao Min, Yan Chenglin, Li Yuanyuan, Nian Tingkai, 2024. Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province. Earth Science, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113

    Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province

    doi: 10.3799/dqkx.2023.113
    • Received Date: 2023-04-24
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • In order to solve the problems of insufficient landslide catalog data in the process of landslide susceptibility evaluation, and low model accuracy due to subjective or random selection of non-landslide raster cells, 12 evaluation factors were selected from the aspects of topography and geomorphology, geological conditions, hydrometeorological conditions and human engineering activities to construct a landslide evaluation system for Xianrendong National Nature Reserve in southern Liaoning Province in this paper; Furthermore, the imbalance of sample categories between landslide and non-landslide was solved based on SMOTETomek comprehensive sampling method, and then a dataset of landslide susceptibility evaluation was established; Finally, for the nonlinear landslide data in the east and west sides of the study area (zones A and B), the convolutional neural networks (CNN) model was constructed to evaluate the landslide susceptibility, and the distribution map of landslide susceptibility in the study area was accurately drawn. The results show that the CNN model had good adaptability, and the zoning map of landslide susceptibility shows a reasonable spatial distribution. The AUC area of the test set in part A and part B of the study area was 91.2% and 94.3%, respectively.70% of landslides were distributed in higher and above grade prone areas, and 68.7% of non-landslides were distributed in lower and below grade prone areas. The high prone area of landslide is mainly located in the area of Maoling Beigou Mountain in the northeast of the study area, the northern mountainous area of the Bingyugou Scenic Area, and the coastal area of the Biliuhe Reservoir. The research results can provide an important scientific basis for the planning of geological disaster prevention and control, and the formulation of emergency plans in Xianrendong National Nature Reserve in southern Liaoning Province.

       

    • loading
    • Althuwaynee, O. F., Pradhan, B., Lee, S., 2016. A Novel Integrated Model for Assessing Landslide Susceptibility Mapping Using CHAID and AHP Pair-Wise Comparison. International Journal of Remote Sensing, 37(5): 1190-1209. https://doi.org/10.1080/01431161.2016.1148282
      Aslam, B., Zafar, A., Khalil, U., 2021. Development of Integrated Deep Learning and Machine Learning Algorithm for the Assessment of Landslide Hazard Potential. Soft Computing, 25(21): 13493-13512. https://doi.org/10.1007/s00500-021-06105-5
      Blahut, J., van Westen, C. J., Sterlacchini, S., 2010. Analysis of Landslide Inventories for Accurate Prediction of Debris-Flow Source Areas. Geomorphology, 119(1-2): 36-51. https://doi.org/10.1016/j.geomorph.2010.02.017
      Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340-350. https://doi.org/10.1016/j.jag.2010.04.006
      Chen, W., Li, W. P., Hou, E. K., et al., 2014. Landslide Susceptibility Mapping Based on GIS and Information Value Model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7(11): 4499-4511. https://doi.org/10.1007/s12517-014-1369-z
      Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers & Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470
      Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1-2): 55-69. https://doi.org/10.1016/j.geomorph.2006.07.019
      Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1440-1448. https://doi.org/10.1109/ICCV.2015.169
      Habumugisha, J. M., Chen, N. S., Rahman, M., et al., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3): 1734. https://doi.org/10.3390/su14031734
      Hansen, A., Franks, C. A. M., Kirk, P. A., et al., 1995. Application of GIS to Hazard Assessment, with Particular Reference to Landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards. Springer, Dordrecht, 273-298. https://doi.org/10.1007/978-94-015-8404-3_14
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Ilmy, H. F., Darminto, M. R., Widodo, A., 2021. Application of Machine Learning on Google Earth Engine to Produce Landslide Susceptibility Mapping (Case Study: Pacitan). IOP Conference Series: Earth and Environmental Science, 731(1): 012028. https://doi.org/10.1088/1755-1315/731/1/012028
      Li, W. B., Fan, X. M., Huang, F. M., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Li, W. J., Fang, Z. C., Wang, Y., 2022. Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoirarea, China. Stochastic Environmental Research and Risk Assessment, 36(8): 2207-2228. https://doi.org/10.1007/s00477-021-02032-x
      Liu, Y., 2022. Research on Pre Loan Risk Control Based on Stacking Integration Method under Unbalanced Samples (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract).
      Meten, M., Bhandary, N. P., Yatabe, R., 2015. GIS-Based Frequency Ratio and Logistic Regression Modelling for Landslide Susceptibility Mapping of Debre Sina Area in Central Ethiopia. Journal of Mountain Science, 12(6): 1355-1372. https://doi.org/10.1007/s11629-015-3464-3
      Moni, M., Sethi, I. P. S., Sethi, S. P. S., 1991. Natural Calamities Relief Management Software. IETE Technical Review, 8(2): 64-71. https://doi.org/10.1080/02564602.1991.11438716
      Nian, T. K., Feng, Z. K., Yu, P. C., et al., 2013. Strength Behavior of Slip-Zone Soils of Landslide Subject to the Change of Water Content. Natural Hazards, 68(2): 711-721. https://doi.org/10.1007/s11069-013-0647-5
      Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523
      Pei, Z. W., Nian, T. K., Wu, H., et al., 2021. Research Progress on Emergency Treatment Techniques for Landslide Geological Hazards. Journal of Disaster Prevention and Mitigation Engineering, 41(6): 1382-1394 (in Chinese with English abstract).
      Pham, V. D., Nguyen, Q. H., Nguyen, H. D., et al., 2020. Convolutional Neural Network-Optimized Moth Flame Algorithm for Shallow Landslide Susceptible Analysis. IEEE Access, 8: 32727-32736. https://doi.org/10.1109/ACCESS.2020.2973415
      Wang, C. Y., 2008. Study on the Relationship between Aspect and Slope Stability (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      Wang, W. D., He, Z. L., Han, Z., et al., 2020. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China. Natural Hazards, 103(3): 3239-3261. https://doi.org/10.1007/s11069-020-04128-z
      Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract).
      Wu, C., 2019. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution. Water, 11(12): 2609. https://doi.org/10.3390/w11122609
      Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract).
      Yan, C. L., Zheng, D. F., Nian, T. K., et al., 2021. Fuzzy Bayesian Network Model Based on ANP and Its Application to Coastal Zone Geohazard Risk Assessment. Journal of Engineering Geology, 29(6): 1862-1868 (in Chinese with English abstract).
      Zhang, C. X., Yang, Q. K., Li, R., 2005. Advancement in Topographic Wetness Index and Its Application. Progress In Geography, 24(6): 116-123 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6301.2005.06.014
      Zhang, K. X., Wu, X. L., Niu, R. Q., et al., 2017. The Assessment of Landslide Susceptibility Mapping Using Random Forest and Decision Tree Methods in the Three Gorges Reservoir Area, China. Environmental Earth Sciences, 76(11): 405. https://doi.org/10.1007/s12665-017-6731-5
      Zhao, P. X., Masoumi, Z., Kalantari, M., et al., 2022. A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sensing, 14(1): 211. https://doi.org/10.3390/rs14010211
      Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract).
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      刘允, 2022. 基于不平衡样本下Stacking集成方法的贷前风控研究(硕士学位论文). 武汉: 华中师范大学.
      裴振伟, 年廷凯, 吴昊, 等, 2021. 滑坡地质灾害应急处置技术研究进展. 防灾减灾工程学报, 41(6): 1382-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202106028.htm
      王朝阳, 2008. 坡向与斜坡稳定性的关系研究(硕士学位论文). 昆明: 昆明理工大学.
      王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244-2260. doi: 10.12082/dqxxkx.2021.210057
      武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
      闫成林, 郑德凤, 年廷凯, 等, 2021. 基于ANP的模糊贝叶斯网络模型及其在海岸带地质灾害风险评价中的应用. 工程地质学报, 29(6): 1862-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106021.htm
      张彩霞, 杨勤科, 李锐, 2005. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 24(6): 116-123. doi: 10.3969/j.issn.1007-6301.2005.06.014
      周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (499) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return