• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 9
    Sep.  2024
    Turn off MathJax
    Article Contents
    Ye Kaiyun, Zhao Kun, Tong Xia, Li Songzhuo, Lang Xianguo, 2024. Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China. Earth Science, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116
    Citation: Ye Kaiyun, Zhao Kun, Tong Xia, Li Songzhuo, Lang Xianguo, 2024. Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China. Earth Science, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116

    Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China

    doi: 10.3799/dqkx.2023.116
    • Received Date: 2023-02-07
      Available Online: 2024-10-16
    • Publish Date: 2024-09-25
    • The reconstruction of the paleo-ocean nitrogen cycle in geological history is helpful to understanding the REDOX state of the ocean at that time, whereas the study of the Late Ediacaran marine nitrogen cycle is relatively insufficient. Here we report detailed nitrogen isotope (δ15N) and organic carbon isotopic compositions (δ13Corg) from the Silikou section in northern Guangxi and the Shangdiping section in southeastern Guizhou Province. The results show that the average values of δ15N from the Silikou section and Shangdiping section are (1.6±2.0)‰ and (3.5±1.1)‰, respectively, both of which show a gradual decrease from old to new. The mean δ13Corg values of the two sections are (-30.0±1.4)‰ and (-30.6±1.4)‰, respectively. The relatively high δ15N values indicate that there was an aerobic nitrogen cycle coupled with nitrification and denitrification, and there was a stable marine nitrate reservoir in the Late Ediacaran. The gradual decrease from old to new in δ15N may result from the expansion of deep water anoxia in which denitrification and anammox can consume a large amount of NO3 and stimulate nitrogen fixation. Thus, the expansion of deep anoxic water column at the end of the Ediacaran may have exacerbated the extinction of the Ediacaran biota at ~542 Ma.

       

    • loading
    • Ader, M., Thomazo, C., Sansjofre, P., et al., 2016. Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks: Assumptions and Perspectives. Chemical Geology, 429: 93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010
      Algeo, T. J., Meyers, P. A., Robinson, R. S., et al., 2014. Icehouse⁃Greenhouse Variations in Marine Denitrification. Biogeosciences, 11(4): 1273-1295. https://doi.org/10.5194/bg⁃11⁃1273⁃2014
      Bhattacharya, S., Dutta, S., 2015. Neoproterozoic⁃Early Cambrian Biota and Ancient Niche: A Synthesis from Molecular Markers and Palynomorphs from Bikaner⁃Nagaur Basin, Western India. Precambrian Research, 266: 361-374. https://doi.org/10.1016/j.precamres.2015.05.029
      Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548(7669): 578-581. https://doi.org/10.1038/nature23457
      Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep⁃Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499
      Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010a. The Major and REE Geochemistry of the Silikou Chert in Northern Guangxi Province. Acta Sedimentologica Sinica, 28(6): 1098-1107 (in Chinese with English abstract).
      Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep⁃Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322: 80-87.https://doi.org/10.1016/j.palaeo.2012.01.019
      Chang, H. J., Chu, X., Feng, L. J., et al., 2010b. Iron Speciation in Cherts from the Laobao Formation, South China: Implications for Anoxic and Ferruginous Deep⁃Water Conditions. Chinese Science Bulletin, 55(20): 2010-2017 (in Chinese). doi: 10.1360/csb2010-55-20-2010
      Charvet, J., 2013. The Neoproterozoic⁃Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
      Chen, Y., Diamond, C. W., Stüeken, E. E., et al., 2019. Coupled Evolution of Nitrogen Cycling and Redoxcline Dynamics on the Yangtze Block across the Ediacaran⁃Cambrian Transition. Geochimica et Cosmochimica Acta, 257: 243-265. https://doi.org/10.1016/j.gca.2019.05.017
      Cremonese, L., Shields⁃Zhou, G., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. https://doi.org/10.1016/j.precamres.2011.12.004
      Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran⁃Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014gc005595
      Du, Y., Song, H. Y., Grasby, S. E., et al., 2023. Recovery from Persistent Nutrient⁃N Limitation Following the Permian⁃Triassic Mass Extinction. Earth and Planetary Science Letters, 602: 117944. https://doi.org/10.1016/j.epsl.2022.117944
      Fu, Y., Wang, F. L., Guo, C., et al., 2022. Re⁃Os Geochronology of the Liuchapo Formation across the Ediacaran⁃Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 33(1): 25-35. https://doi.org/10.1007/s12583⁃021⁃1473⁃4
      Gao, P., Li, S. J., Lash, G. G., et al., 2020. Silicification and Si Cycling in a Silica⁃Rich Ocean during the Ediacaran⁃Cambrian Transition. Chemical Geology, 552: 119787. https://doi.org/10.1016/j.chemgeo.2020.119787
      Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest⁃Known Carbon Isotope Excursion in Earth's History. Nature Geoscience, 4(5): 285-292. https://doi.org/10.1038/ngeo1138
      Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran⁃Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016
      Hu, J., 2008. The Cherty Microbolite in the Deeper Water Facies during the Precambrian⁃Cambrian Transitional Period in Northeast Guangxi Province, China. Acta Micropalaeontologica Sinica, 25(3): 291-305 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2008.03.008
      Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006
      Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
      Mingram, B., Hoth, P., Lüders, V., et al., 2005. The Significance of Fixed Ammonium in Palaeozoic Sediments for the Generation of Nitrogen⁃Rich Natural Gases in the North German Basin. International Journal of Earth Sciences, 94(5): 1010-1022. https://doi.org/10.1007/s00531⁃005⁃0015⁃0
      Narbonne, G. M., 2005. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annual Review of Earth and Planetary Sciences, 33(1): 421-442. https://doi.org/10.1146/annurev.earth.33.092203.122519
      Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Sigman, D. M., Casciotti, K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele, J. H., ed., Encyclopedia of Ocean Sciences. Elsevier/Academic Press, London, 1884-1894. https://doi.org/10.1006/rwos.2001.0172
      Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid⁃Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14(1): 1564. https://doi.org/10.1038/s41467⁃023⁃37172⁃x
      Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454. https://doi.org/10.1038/nature14589
      Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth⁃Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
      Tian, L., Song, H. Y., Ye, Q., et al., 2020. Recurrent Anoxia Recorded in Shallow Marine Facies at Zhangcunping (Western Hubei, China) Throughout the Ediacaran to Earliest Cambrian. Precambrian Research, 340: 105617. https://doi.org/10.1016/j.precamres.2020.105617
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, D., Ling, H. F., Struck, U., et al., 2018a. Coupling of Ocean Redox and Animal Evolution during the Ediacaran⁃Cambrian Transition. Nature Communications, 9: 2575. https://doi.org/10.1038/s41467⁃018⁃04980⁃5
      Wang, D., Struck, U., Ling, H. F., et al., 2015. Marine Redox Variations and Nitrogen Cycle of the Early Cambrian Southern Margin of the Yangtze Platform, South China: Evidence from Nitrogen and Organic Carbon Isotopes. Precambrian Research, 267: 209-226. https://doi.org/10.1016/j.precamres.2015.06.009
      Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran⁃Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break⁃up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301⁃9268(02)00209⁃7
      Wang, X. Q., Jiang, G. Q., Shi, X. Y., et al., 2018b. Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 240: 220-235. https://doi.org/10.1016/j.gca.2018.08.034
      Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2014. Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran⁃Early Cambrian Yangtze Platform. Science in China (Series D), 44(6): 1142-1160 (in Chinese).
      Xue, J. Z., Wang, J. S., Li, B. X., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664 (in Chinese with English abstract).
      Zhang, F. F., Xiao, S. H., Kendall, B., et al., 2018. Extensive Marine Anoxia during the Terminal Ediacaran Period. Science Advances, 4(6): eaan8983. https://doi.org/10.1126/sciadv.aan8983
      Zhou, M. Z., Luo, T. Y., Liu, S. R., et al., 2013. SHRIMP Zircon Age for a K⁃Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science in China (Series D), 43(7): 1195-1206 (in Chinese).
      Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract).
      Zhu, Y. Y., Sun, T. Y., Xing, T., et al., 2022. Reconstruction of Atmospheric Nitrogen Deposition and Nitrogen Source in Wuhan by the Nitrogen Contents and Isotopic Composition of Camphor Leaves. Earth Science, 47(3): 1136-1142 (in Chinese with English abstract).
      常华进, 储雪蕾, 冯连君, 等, 2010a. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示. 沉积学报, 28(6): 1098-1107.
      常华进, 储雪蕾, 冯连君, 等, 2010b. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010-2017.
      胡杰, 2008. 桂东北较深水相前寒武纪‒寒武纪之交的硅质微生物岩. 微体古生物学报, 25(3): 291-305. doi: 10.3969/j.issn.1000-0674.2008.03.008
      王新强, 史晓颖, Jiang, G. Q., 等, 2014. 华南埃迪卡拉纪‒寒武纪过渡期的有机碳同位素梯度和海洋分层. 中国科学(D辑), 44(6): 1142-1160.
      薛进庄, 王嘉树, 李炳鑫, 等, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
      周明忠, 罗泰义, 刘世荣, 等, 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学(D辑), 43(7): 1195-1206.
      朱茂炎, 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269-287.
      朱园园, 孙庭玉, 邢腾, 等, 2022. 利用樟树叶片氮含量和同位素组成初探武汉市大气氮沉降和氮源. 地球科学, 47(3): 1136-1142. doi: 10.3799/dqkx.2021.220
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (256) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return