• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Ding Wuju, Lu Feiyu, Zhao Bo, Li Minjing, 2024. Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen. Earth Science, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121
    Citation: Ding Wuju, Lu Feiyu, Zhao Bo, Li Minjing, 2024. Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen. Earth Science, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121

    Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen

    doi: 10.3799/dqkx.2023.121
    • Received Date: 2022-11-09
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The most significant feature of the river hyporheic zone is the dynamic change of water chemical composition caused by the periodical alternation of river water and groundwater, and the interval between periods is different. The hyporheic zone is a denitrification hot zone, and the response law of nitrification and denitrifying microorganisms to this periodical change determines the nitrogen removal efficiency of the hyporheic zone. According to this, different nitrogen, DO, etc. were supplied multiple times at different intervals to study the kinetics of nitrification and denitrification in multiple cycles. The nitrification and denitrification rates in the first cycle were slow, and there was an obvious hysteresis period. In the subsequent second and third cycles, regardless of the length of substrate dosing interval, no significant hysteresis period was observed for nitrification and denitrification, the reaction rate was accelerated, and the number of functional bacteria increased, but the number of functional bacteria was inversely proportional to the interval time. The initial concentration of nitrate nitrogen significantly affects the nitrous nitrogen kinetic process. The increase in the number of nitrifying and denitrifying bacteria and the maintenance of high reactivity for a long time are one of the efficient nitrogen removal mechanisms in the hyporheic zone.

       

    • Butturini, A., Battin, T. J., Sabater, F., 2000. Nitrification in Stream Sediment Biofilms: The Role of Ammonium Concentration and DOC Quality. Water Research, 34(2): 629-639. https://doi.org/10.1016/s0043-1354(99)00171-2
      Cao, Y. R., Li, M. J., Mao, S. J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471(in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673(in Chinese with English abstract).
      Dwivedi, D., Arora, B., Steefel, C. I., et al., 2018. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resources Research, 54(1): 205-222. https://doi.org/10.1002/2017WR022346
      Erisman, J. W., Galloway, J. N., Seitzinger, S., et al., 2013. Consequences of Human Modification of the Global Nitrogen Cycle. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 368(1621): 20130116. https://doi.org/10.1098/rstb.2013.0116
      Gu, B. J., Ge, Y., Chang, S. X., et al., 2013. Nitrate in Groundwater of China: Sources and Driving Forces. Global Environmental Change, 23(5): 1112-1121. https://doi.org/10.1016/j.gloenvcha.2013.05.004
      Kihumba, A. M., Longo, J. N., Vanclooster, M., 2016. Modelling Nitrate Pollution Pressure Using a Multivariate Statistical Approach: The Case of Kinshasa Groundwater Body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425-437. https://doi.org/10.1007/s10040-015-1337-z
      Kolbe, T., de Dreuzy, J. R., Abbott, B. W., et al., 2019. Stratification of Reactivity Determines Nitrate Removal in Groundwater. Proceedings of the National Academy of Sciences of the United States of America, 116(7): 2494-2499. https://doi.org/10.1073/pnas.1816892116
      Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract).
      Li, M. J., Li, R., Gao, Y. Q., et al., 2020. Nitrate Bioreduction Dynamics in Hyporheic Zone Sediments under Cyclic Changes of Chemical Compositions. Journal of Hydrology, 585: 124836. https://doi.org/10.1016/j.jhydrol.2020.124836
      Liu, Y., Tay, J. H., 2001. Factors Affecting Nitrite Build-up in Nitrifying Biofilm Reactor. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(6): 1027-1040. https://doi.org/10.1081/ese-100104129
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
      Packman, A. I., Salehin, M., Zaramella, M., 2004. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7): 647-656. https://doi.org/10.1061/(asce)0733-9429(2004)130: 7(647) doi: 10.1061/(asce)0733-9429(2004)130:7(647
      Peng, K., Ouyang, Z. P., Wu, X. Y., et al., 2023. Cultivation of Hydrogenotrophic Microorganisms and the Denitrification Characteristics. Acta Microbiologica Sinica, 63(2): 821-833(in Chinese with English abstract).
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661(in Chinese with English abstract).
      Serio, F., Miglietta, P. P., Lamastra, L., et al., 2018. Groundwater Nitrate Contamination and Agricultural Land Use: A Grey Water Footprint Perspective in Southern Apulia Region (Italy). The Science of the Total Environment, 645: 1425-1431. https://doi.org/10.1016/j.scitotenv.2018.07.241
      Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684(in Chinese with English abstract).
      Shen, S., Ma, T., Du, Y., et al., 2018. The Spatial Distribution Characteristic and Genesis of Nitrogen of Shallow Groundwater in the East of Jianghan Plain. Environmental Science & Technology, 41(2): 47-56(in Chinese with English abstract).
      Spalding, R. F., Exner, M. E., 1993. Occurrence of Nitrate in Groundwater: A Review. Journal of Environmental Quality, 22(3): 392-402. https://doi.org/10.2134/jeq1993.00472425002200030002x
      Teng, Y. G., Zuo, R., Wang, J. S., 2007. Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function. Earth and Environment, 35(1): 1-8(in Chinese with English abstract).
      Wang, J. Q., Ma, R., Guo, Z. L., et al., 2020. Experiment and Multicomponent Model Based Analysis on the Effect of Flow Rate and Nitrate Concentration on Denitrification in Low-Permeability Media. Journal of Contaminant Hydrology, 235: 103727. https://doi.org/10.1016/j.jconhyd.2020.103727
      Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246
      Wang, L. K., Zeng, G. M., Yang, Z. H., et al., 2014. Operation of Partial Nitrification to Nitrite of Landfill Leachate and Its Performance with Respect to Different Oxygen Conditions. Biochemical Engineering Journal, 87: 62-68. https://doi.org/10.1016/j.bej.2014.03.013
      Wang, Y. X., Du, Y., Deng, Y. M., et al., 2022. Lacustrine Groundwater Discharge and Lake Water Quality Evolution. Bulletin of Geological Science and Technology, 41(1): 1-10(in Chinese with English abstract).
      Ward, M. H., DeKok, T. M., Levallois, P., et al., 2005. Workgroup Report: Drinking-Water Nitrate and Health: Recent Findings and Research Needs. Environmental Health Perspectives, 113(11): 1607-1614. https://doi.org/10.1289/ehp.8043
      Wu, G. D., Zhang, X., Lu, C. P., 2019. Spatial-Temporal Variability in Hyporheic Zone and Hyporheic Exchange. Yangtze River, 50(10): 100-107(in Chinese with English abstract).
      Yang, J., Xiao, T. Y., Li, H. B., et al., 2018. Spatial Distribution and Influencing Factors of the NO3-N Concentration in Groundwater in Jianghan Plain. China Environmental Science, 38(2): 710-718(in Chinese with English abstract).
      Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract).
      曹意茹, 李民敬, 毛胜军, 等, 2021. 汉江下游河水-地下水交互带中地下水水化学和氮分布特征. 地球与环境, 49(5): 463-471.
      杜尧, 马腾, 邓娅敏, 等, 2017. 潜流带水文-生物地球化学: 原理、方法及其生态意义. 地球科学, 42(5): 661-673. doi: 10.3799/dqkx.2017.054
      蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16.
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      彭科, 欧阳泽坪, 吴晓燕, 等, 2023. 氢自养微生物的驯化及其反硝化特性研究. 微生物学报, 63(2): 821-833.
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      沈帅, 马腾, 杜尧, 等, 2017. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律. 地球科学, 42(5): 674-684. doi: 10.3799/dqkx.2017.055
      沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56.
      滕彦国, 左锐, 王金生, 2007. 地表水-地下水的交错带及其生态功能. 地球与环境, 35(1): 1-8.
      王焰新, 杜尧, 邓娅敏, 等, 2022. 湖底地下水排泄与湖泊水质演化. 地质科技通报, 41(1): 1-10.
      吴光东, 张潇, 鲁程鹏, 2019. 河流潜流带和潜流交换时空变异特征研究综述. 人民长江, 50(10): 100-107.
      杨静, 肖天昀, 李海波, 等, 2018. 江汉平原地下水中硝酸盐的分布及影响因素. 中国环境科学, 38(2): 710-718.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05020406080
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 70.8 %META: 70.8 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.5 %其他: 17.5 %上海: 2.2 %上海: 2.2 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %乐山: 0.8 %乐山: 0.8 %北京: 4.5 %北京: 4.5 %十堰: 0.6 %十堰: 0.6 %南京: 0.6 %南京: 0.6 %南昌: 0.8 %南昌: 0.8 %南通: 0.6 %南通: 0.6 %合肥: 0.8 %合肥: 0.8 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 0.8 %天津: 0.8 %孝感: 0.6 %孝感: 0.6 %安康: 0.8 %安康: 0.8 %宣城: 0.8 %宣城: 0.8 %常州: 0.6 %常州: 0.6 %平顶山: 0.3 %平顶山: 0.3 %广州: 1.9 %广州: 1.9 %张家口: 3.3 %张家口: 3.3 %成都: 1.1 %成都: 1.1 %扬州: 1.1 %扬州: 1.1 %拉斯维加斯: 1.1 %拉斯维加斯: 1.1 %昆明: 1.4 %昆明: 1.4 %杭州: 1.9 %杭州: 1.9 %武汉: 3.9 %武汉: 3.9 %济宁: 0.6 %济宁: 0.6 %淄博: 0.3 %淄博: 0.3 %温州: 1.4 %温州: 1.4 %湖州: 0.8 %湖州: 0.8 %漯河: 4.5 %漯河: 4.5 %盐城: 0.3 %盐城: 0.3 %芒廷维尤: 25.1 %芒廷维尤: 25.1 %芝加哥: 1.4 %芝加哥: 1.4 %苏州: 0.6 %苏州: 0.6 %萍乡: 0.3 %萍乡: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 6.1 %西宁: 6.1 %西安: 0.3 %西安: 0.3 %诺沃克: 0.8 %诺沃克: 0.8 %运城: 2.2 %运城: 2.2 %遵义: 0.6 %遵义: 0.6 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.8 %郑州: 0.8 %重庆: 1.1 %重庆: 1.1 %镇江: 0.6 %镇江: 0.6 %长沙: 0.6 %长沙: 0.6 %青岛: 0.8 %青岛: 0.8 %马鞍山: 0.3 %马鞍山: 0.3 %其他上海乌鲁木齐乐山北京十堰南京南昌南通合肥哥伦布嘉兴天津孝感安康宣城常州平顶山广州张家口成都扬州拉斯维加斯昆明杭州武汉济宁淄博温州湖州漯河盐城芒廷维尤芝加哥苏州萍乡衢州西宁西安诺沃克运城遵义邯郸郑州重庆镇江长沙青岛马鞍山

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(5)

      Article views (252) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return