• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Ye Jianqiao, Mao Xumei, 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126
    Citation: Ye Jianqiao, Mao Xumei, 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126

    Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System

    doi: 10.3799/dqkx.2023.126
    • Received Date: 2022-12-22
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The theory of groundwater flow system based on gravity is the main tool to describe the seepage characteristics of groundwater system. The gravity potential generated by water head difference is the main driving force of groundwater migration. However, in the hydrothermal system, there is a deep heat source other than geothermal gradient, which will provide additional energy to the groundwater system and generate new driving force. In the convective hydrothermal system, the temperature of groundwater is lower in the recharge section and higher in the discharge section. The high temperature groundwater in the discharge section will produce changes in density, salinity and viscosity, which will lead to changes in the pressure head of geothermal water and form geothermal driving force. In the high temperature hydrothermal system, the temperature of groundwater in the discharge section is higher, and there may be a phase transition process from liquid water to gaseous water, which causes the groundwater temperature to change abruptly, thus causing the change of geothermal driving force. In this paper, the Yangbajing geothermal field in Tibet is taken as an example. Using SiO2 geothermometer, it is found that there is a large difference in water temperature at the same depth between the geothermal reservoir and the geothermal well. By comparing the saturated evaporation line, it is determined that the phase change process causing the temperature drop occurred at 43.9 m from the wellhead. Combined with the first law of thermodynamics, the temperature difference before and after the phase transition is calculated to be about 23.6 ℃, and the resulting change in geothermal driving force is -1.02 m. The results show that the geothermal driving force in the hydrothermal system only exists in the discharge section, and the phase change of geothermal water in the discharge section will cause the change of geothermal driving force.

       

    • loading
    • Akiya, N., Savage, P. E., 2002. Roles of Water for Chemical Reactions in High-Temperature Water. Chemical Reviews, 102(8): 2725-2750. https://doi.org/10.1021/cr000668w
      Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. https://doi.org/10.1016/0377-0273(85)90039-3
      Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. Ⅲ. Chemical Geothermometry in Geothermal Investigations. Geochimica et Cosmochimica Acta, 47(3): 567-577. https://doi.org/10.1016/0016-7037(83)90278-8
      Bischoff, J. L., Rosenbauer, R. J., 1984. The Critical Point and Two-Phase Boundary of Seawater, 200-500 ℃. Earth and Planetary Science Letters, 68(1): 172-180. https://doi.org/10.1016/0012-821x(84)90149-3
      Duoji, 2003. Typical High Temperature Geothermal System-Basic Characteristics of Yangbajing Geothermal Field. Engineering Science, 5(1): 42-47(in Chinese with English abstract).
      Engelen, G. B., Jones, C. P., 1986. Developments in the Analysis of Groundwater Flow Systems. IAHS Publication, (163): 2-8.
      Fournier, R. O., 1976. Exchange of Na+ and K+ between Water Vapor and Feldspar Phases at High Temperature and Low Vapor Pressure. Geochimica et Cosmochimica Acta, 40(12): 1553-1561. https://doi.org/10.1016/0016-7037(76)90094-6
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fournier, R. O., Truesdell, A. H., 1970. Chemical Indicators of Subsurface Temperature Applied to Hot Spring Waters of Yellowstone National Park, Wyoming, U. S. A. Geothermics, 2(P1): 529–535.
      Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
      Freeze, R. A., Harlan, R. L., 1969. Blueprint for a Physically-Based, Digitally-Simulated Hydrologic Response Model. Journal of Hydrology, 9(3): 237-258. https://doi.org/10.1016/0022-1694(69)90020-1
      Fu, X. C., 2005. Physical Chemistry. 5th ed. People's Education Press, Beijing (in Chinese).
      Gao, Z. J., 2013. Experimental Demonstration and Significance of Groundwater Flow System Differentiation. Journal of Shandong University of Science and Technology (Natural Science), 32(2): 17-24(in Chinese with English abstract).
      Gao, Z. J., Liu, Y. G., 2014. Research on Application of Thermally Driven in Groundwater Movement. Ground Water, 36(2): 7-9(in Chinese with English abstract).
      Garven, G., 1995. Continental-Scale Groundwater Flow and Geologic Processes. Annual Review of Earth and Planetary Sciences, 23: 89-117. https://doi.org/10.1146/annurev.earth.23.1.89
      Guo, Q. H., Wang, Y. X., Liu, W., 2007. Major Hydrogeochemical Processes in the Two Reservoirs of the Yangbajing Geothermal Field, Tibet, China. Journal of Volcanology and Geothermal Research, 166(3-4): 255-268. https://doi.org/10.1016/j.jvolgeores.2007.08.004
      Hubbert, M. K., 1940. The Theory of Ground-Water Motion. The Journal of Geology, 48(8, Part 1): 785-944. https://doi.org/10.1029/TR021i002p00648-1
      Kell, G. S., 1977. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water. Journal of Physical and Chemical Reference Data, 6(4): 1109-1131. https://doi.org/10.1063/1.555561
      Li, J. X., Guo, Q. H., Wang, Y. X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science, 40(9): 1576-1584(in Chinese with English abstract).
      Liang, X., Zhang, R. Q., Jin, M. G., 2015. Grounduater Flow Systems. Geological Publishing House, Beijing (in Chinese).
      Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735(in Chinese with English abstract).
      Mao, X. M., Ye, J. Q., Dong, Y. Q., et al., 2022. Geothermal Driving Force: A New Additional Non-Gravity Action Driving the Migration of Geothermal Water in the Xinzhou Geothermal Field of Yangjiang, Guangdong. Bulletin of Geological Science and Technology, 41(1): 137-145(in Chinese with English abstract).
      Pope, S., 1987. Turbulent Premixed Flames. Annual Review of Fluid Mechanics, 19(1): 237-270. https://doi.org/10.1146/annurev.fluid.19.1.237
      Saar, M. O., 2011. Review: Geothermal Heat as a Tracer of Large-Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeology Journal, 19(1): 31-52. https://doi.org/10.1007/s10040-010-0657-2
      Tóth, Á., Galsa, A., Mádl-Szőnyi, J., 2020. Significance of Basin Asymmetry and Regional Groundwater Flow Conditions in Preliminary Geothermal Potential Assessment—Implications on Extensional Geothermal Plays. Global and Planetary Change, 195: 103344. https://doi.org/10.1016/j.gloplacha.2020.103344
      Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795
      Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
      Tóth, J. R., 1980. Deposition of Submarine Crusts Rich in Manganese and Iron. Geological Society of America Bulletin, 91(1): 44-54. https://doi.org/10.1130/0016-7606(1980)9144: doscri>2.0.co;2 doi: 10.1130/0016-7606(1980)9144:doscri>2.0.co;2
      Wang, C. S., Dai, J. G., Zhao, X. X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 621: 1-43. https://doi.org/10.1016/j.tecto.2014.01.036
      Wang, J. L., Jin, M. G., Jia, B. J., et al., 2022. Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions. Journal of Earth Science, 33(6): 1583-1600. https://doi.org/10.1007/s12583-022-1623-3
      Wang, Y. C., Li, L., Wen, H. G., et al., 2022. Geochemical Evidence for the Nonexistence of Supercritical Geothermal Fluids at the Yangbajing Geothermal Field, Southern Tibet. Journal of Hydrology, 604: 127243. https://doi.org/10.1016/j.jhydrol.2021.12724310.31223/x56w7w
      White, D. E., Williams, D. L., 1975. Assessment of Geothermal Resources of the United States, No. 726-730. US Department of the Interior, Geological Survey.
      Xu, T., Yuan Y. L., Jia, X. F., et al., 2018. Prospects of Power Generation from an Enhanced Geothermal System by Water Circulation through Two Horizontal Wells: A Case Study in the Gonghe Basin, Qinghai Province, China. Energy, 148: 196-207. https://doi.org/10.1016/j.energy.2018.01.135
      Xu, T. F., Wang, Y., Feng, G. H., 2021. Research Progress and Development Prospect of Deep Supercritical Geothermal Resources. Natural Gas Industry, 41(3): 155-167(in Chinese with English abstract).
      Zhao, P., Dor, J., Liang, T. L., et al., 1998. Characteristics of Gas Geochemistry in Yangbajing Geothermal Field, Tibet. Chinese Science Bulletin, 43(21): 1770-1777. https://doi.org/10.1007/BF02883369
      Zheng, X. L., Guo, J. Q., 1996. Silica Geothermometer and Its Related Problems. Groundwater, 18(2): 85-88(in Chinese with English abstract).
      Zhu, B. Q., Zhu, L. X., 1992. Geochemical Exploration of Geothermal Field. Geological Publishing House, Beijing(in Chinese).
      Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608(in Chinese with English abstract).
      多吉, 2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学, 5(1): 42-47.
      傅献彩, 2005. 物理化学-上册. 5版. 北京: 人民教育出版社.
      高宗军, 2013. 地下水流系统分异的试验演示及其意义. 山东科技大学学报(自然科学版), 32(2): 17-24.
      高宗军, 刘永贵, 2014. 地下水运动的热驱动机理. 地下水, 36(2): 7-9.
      李洁祥, 郭清海, 王焰新, 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学, 40(9): 1576-1584. doi: 10.3799/dqkx.2015.142
      梁杏, 张人权, 靳孟贵, 2015. 地下水流系统: 理论应用调查. 北京: 地质出版社.
      刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
      毛绪美, 叶建桥, 董亚群, 等, 2022. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法. 地质科技通报, 41(1): 137-145.
      许天福, 汪禹, 封官宏, 2021. 深部超临界地热资源研究进展及开发前景展望. 天然气工业, 41(3): 155-167.
      郑西来, 郭建青, 1996. 二氧化硅地热温标及其相关问题的处理方法. 地下水, 18(2): 85-88.
      朱炳球, 朱立新, 1992. 地热田地球化学勘查. 北京: 地质出版社.
      朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(5)

      Article views (328) PDF downloads(30) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return