• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Yang Tianyang, Shen Yulin, Jin Jun, Huang Wen, Mu Xiwei, Zhang Yunfei, Hu Jiangchen, 2024. Rhythmicity and Geological Significance of Positive Anomalous Natural Gamma Layers in Late Permian Coal-Bearing Series in West Guizhou. Earth Science, 49(10): 3697-3711. doi: 10.3799/dqkx.2023.127
    Citation: Yang Tianyang, Shen Yulin, Jin Jun, Huang Wen, Mu Xiwei, Zhang Yunfei, Hu Jiangchen, 2024. Rhythmicity and Geological Significance of Positive Anomalous Natural Gamma Layers in Late Permian Coal-Bearing Series in West Guizhou. Earth Science, 49(10): 3697-3711. doi: 10.3799/dqkx.2023.127

    Rhythmicity and Geological Significance of Positive Anomalous Natural Gamma Layers in Late Permian Coal-Bearing Series in West Guizhou

    doi: 10.3799/dqkx.2023.127
    • Received Date: 2023-04-01
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The compositional variations and rhythmicity of the positive anomalous natural gamma (GR) layers developed in the Upper Permian of West Guizhou are not clear. In this paper, it analyzed the lithological characteristics, geochemical characteristics and periodicity of positive anomalous GR layers. Al2O3/TiO2, REE patterns, REE-La/Yb, La/Sc-Co/Th, Zr/TiO2-Al2O3/TiO2 and Nb/Ta-Zr/Hf diagrams indicate that the sources of highly radioactive layers include Emeishan basalt, volcanic ash originates from the Emeishan large igneous province during its waning phase and South China volcanic ash. The positive anomalous GR layers were formed during a period of relatively hot and low sea level, with long and short eccentricity cycles. The hot climate change caused rapid sea level rise and ice volume drop, and the rapid change of stress state on the region triggered volcanic activity to form periodic positive anomalous GR formations. Precise identification of positive anomalous GR layers can be used to compare and delineate the regional stratigraphic framework, and to analyze the magmatic evolution and critical element enrichment of the late Emeishan large igneous province.

       

    • loading
    • Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., et al., 2015. Provenance and Depositional History of Continental Slope Sediments in the Southwestern Gulf of Mexico Unraveled by Geochemical Analysis. Continental Shelf Research, 95: 15-26. https://doi.org/10.1016/j.csr.2015.01.003
      Dai, S. F., Ward, C. R., Graham, I. T., et al., 2017. Altered Volcanic Ashes in Coal and Coal-Bearing Sequences: A Review of Their Nature and Significance. Earth-Science Reviews, 175: 44-74. https://doi.org/10.1016/j.earscirev.2017.10.005
      Gao, Q. L., Chen, Z. Q., Zhang, N., et al., 2022. Felsic Volcanisms across the Wuchiapingian-Changhsingian Boundary(Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. Earth Science, 47(8): 2925-2939(in Chinese with English abstract).
      Gao, X. Y., Shao, L. Y., Wang, X. T., et al., 2022. Astronomical Forcing in Lopingian Coal-Bearing Cycles: A Case Study of Bijie Area in Northwestern Guizhou. Journal of Mining Science & Technology, 7(1): 89-100(in Chinese with English abstract).
      Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. https://doi.org/10.1016/s0016-7037(97)00214-7
      He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3/4): 391-405. https://doi.org/10.1016/s0012-821x(03)00323-6
      He, Q., Xiao, L., Balta, B., et al., 2010. Variety and Complexity of the Late-Permian Emeishan Basalts: Reappraisal of Plume-Lithosphere Interaction Processes. Lithos, 119(1/2): 91-107. https://doi.org/10.1016/j.lithos.2010.07.020
      Huang, K. N., Opdyke, N. D., 1998. Magnetostratigraphic Investigations on an Emeishan Basalt Section in Western Guizhou Province, China. Earth and Planetary Science Letters, 163(1-4): 1-14. https://doi.org/10.1016/s0012-821x(98)00169-1
      Johnston, M. J. S., Mauk, F. J., 1972. Earth Tides and the Triggering of Eruptions from Mt Stromboli, Italy. Nature, 239: 266-267. https://doi.org/10.1038/239266b0
      Kiipli, T., Hints, R., Kallaste, T., et al., 2017. Immobile and Mobile Elements during the Transition of Volcanic Ash to Bentonite: An Example from the Early Palaeozoic Sedimentary Section of the Baltic Basin. Sedimentary Geology, 347: 148-159. https://doi.org/10.1016/j.sedgeo.2016.11.009
      Kutterolf, S., Jegen, M., Mitrovica, J. X., et al., 2013. A Detection of Milankovitch Frequencies in Global Volcanic Activity. Geology, 41(2): 227-230. https://doi.org/10.1130/g33419.1
      Kutterolf, S., Schindlbeck, J. C., Jegen, M., et al., 2019. Milankovitch Frequencies in Tephra Records at Volcanic Arcs: The Relation of Kyr-Scale Cyclic Variations in Volcanism to Global Climate Changes. Quaternary Science Reviews, 204: 1-16. https://doi.org/10.1016/j.quascirev.2018.11.004
      Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. https://doi.org/10.1130/g37970.1
      Liao, Z. W., Hu, W. X., Cao, J., et al., 2016. Heterogeneous Volcanism across the Permian-Triassic Boundary in South China and Implications for the Latest Permian Mass Extinction: New Evidence from Volcanic Ash Layers in the Lower Yangtze Region. Journal of Asian Earth Sciences, 127: 197-210. https://doi.org/10.1016/j.jseaes.2016.06.003
      Ma, C. Q., Zou, B. W., Huang, G. Z., 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121(in Chinese with English abstract).
      Ren, Z. Y., Wu, Y. D., Zhang, L., et al., 2017. Primary Magmas and Mantle Sources of Emeishan Basalts Constrained from Major Element, Trace Element and Pb Isotope Compositions of Olivine-Hosted Melt Inclusions. Geochimica et Cosmochimica Acta, 208: 63-85. https://doi.org/10.1016/j.gca.2017.01.054
      Roy, D. K., Roser, B. P., 2013. Climatic Control on the Composition of Carboniferous-Permian Gondwana Sediments, Khalaspir Basin, Bangladesh. Gondwana Research, 23(3): 1163-1171. https://doi.org/10.1016/j.gr.2012.07.006
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4
      Shao, L. Y., Hua, F. H., Yi, T. S., et al., 2021. Sequence-Paleogeography and Coal Accumulation of Lopingian in Guizhou Province. Coal Geology & Exploration, 49(1): 45-56(in Chinese with English abstract).
      Shen, M. L., Dai, S. F., Graham, I. T., et al., 2021. Mineralogical and Geochemical Characteristics of Altered Volcanic Ashes (Tonsteins and K-Bentonites) from the Latest Permian Coal-Bearing Strata of Western Guizhou Province, Southwestern China. International Journal of Coal Geology, 237: 103707. https://doi.org/10.1016/j.coal.2021.103707
      Shen, Y. L., Qin, Y., Guo, Y. H., et al., 2012. Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation. Earth Science, 37(3): 573-579(in Chinese with English abstract).
      Sternai, P., Caricchi, L., Garcia-Castellanos, D., et al., 2017. Magmatic Pulse Driven by Sea-Level Changes Associated with the Messinian Salinity Crisis. Nature Geoscience, 10: 783-787. https://doi.org/10.1038/ngeo3032
      Tian, J., Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract).
      Wang, F. L., Wang, C. Y., Zhao, T. P., 2015. Boron Isotopic Constraints on the Nb and Ta Mineralization of the Syenitic Dikes in the ~260 Ma Emeishan Large Igneous Province (SW China). Ore Geology Reviews, 65: 1110-1126. https://doi.org/10.1016/j.oregeorev.2014.09.009
      Wang, H., Shao, L. Y., Hao, L. M., et al., 2011. Sedimentology and Sequence Stratigraphy of the Lopingian (Late Permian) Coal Measures in Southwestern China. International Journal of Coal Geology, 85(1): 168-183. https://doi.org/10.1016/j.coal.2010.11.003
      Wang, X. T., Shao, L. Y., Eriksson, K. A., et al., 2020. Evolution of a Plume-Influenced Source-to-Sink System: An Example from the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224
      Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
      Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002
      Xie, G. L., Shen, Y. L., Liu, S. G., et al., 2018. Trace and Rare Earth Element (REE) Characteristics of Mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for Provenance, Depositional Conditions and Paleoclimate. Marine and Petroleum Geology, 92: 20-36. https://doi.org/10.1016/j.marpetgeo.2018.02.019
      Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1
      Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39(in Chinese with English abstract).
      Yang, T. Y., Shen, Y. L., Qin, Y., et al., 2021. Distribution of Radioactive Elements (Th, U) and Formation Mechanism of the Bottom of the Lopingian (Late Permian) Coal-Bearing Series in Western Guizhou, SW China. Journal of Petroleum Science and Engineering, 205: 108779. https://doi.org/10.1016/j.petrol.2021.108779
      Yu, X., Yang, J. H., Liu, J. Z., et al., 2017. Provenance of the Late Permian Longtan Formation in SW Guizhou Province and Implication for Reconstruction of Regional Sedimentation and Paleogeography. Acta Geologica Sinica, 91(6): 1374-1385(in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. South China Continental Structure and Problems. Scientia Sinica (Terrae), 43(10): 1553-1582(in Chinese).
      Zhao, L. X., Dai, S. F., Graham, I. T., et al., 2016. New Insights into the Lowest Xuanwei Formation in Eastern Yunnan Province, SW China: Implications for Emeishan Large Igneous Province Felsic Tuff Deposition and the Cause of the End-Guadalupian Mass Extinction. Lithos, 264: 375-391. https://doi.org/10.1016/j.lithos.2016.08.037
      Zhao, Y., 2021. High Frequency Sequence Stratigraphy of Late Permian Coal Measures in Liupanshui Area Western Guizhou Constrained by Event Layers (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      Zhou, Y. P., Bohor, B. F., Ren, Y. L., 2000. Trace Element Geochemistry of Altered Volcanic Ash Layers (Tonsteins) in Late Permian Coal-Bearing Formations of Eastern Yunnan and Western Guizhou Provinces, China. International Journal of Coal Geology, 44(3-4): 305-324. https://doi.org/10.1016/s0166-5162(00)00017-3
      Zong, Y., Shen, Y. L., Qin, Y., et al., 2019. High Frequency Cyclic Sequence Based on the Milankovitch Cycles in Upper Permian Coal Measures in Panxian, Western Guizhou Province. Geological Journal of China Universities, 25(4): 598-609(in Chinese with English abstract).
      高秋灵, 陈中强, 张宁, 等, 2022. 湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录. 地球科学, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175
      高祥宇, 邵龙义, 王学天, 等, 2022. 乐平统含煤岩系旋回地层的天文周期驱动: 以黔西北毕节地区为例. 矿业科学学报, 7(1): 89-100.
      马昌前, 邹博文, 黄贵治, 2022. 火山喷发机制、气候效应及火山地球工程. 地球科学, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
      邵龙义, 华芳辉, 易同生, 等, 2021. 贵州省乐平世层序–古地理及聚煤规律. 煤田地质与勘探, 49(1): 45-56.
      沈玉林, 秦勇, 郭英海, 等, 2012. "多层叠置独立含煤层气系统" 形成的沉积控制因素. 地球科学, 37(3): 573-579. doi: 10.3799/dqkx.2012.064
      田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
      徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39.
      于鑫, 杨江海, 刘建中, 等, 2017. 黔西南晚二叠世龙潭组物源分析及区域沉积古地理重建. 地质学报, 91(6): 1374-1385.
      张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582.
      赵勇, 2021. 以事件层为约束的黔西六盘水地区晚二叠世煤系高频层序地层(硕士学位论文). 徐州: 中国矿业大学.
      宗毅, 沈玉林, 秦勇, 等, 2019. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究. 高校地质学报, 25(4): 598-609.
    • dqkxzx-49-10-3697-附表1.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (255) PDF downloads(40) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return