Citation: | Yang Tianyang, Shen Yulin, Jin Jun, Huang Wen, Mu Xiwei, Zhang Yunfei, Hu Jiangchen, 2024. Rhythmicity and Geological Significance of Positive Anomalous Natural Gamma Layers in Late Permian Coal-Bearing Series in West Guizhou. Earth Science, 49(10): 3697-3711. doi: 10.3799/dqkx.2023.127 |
Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., et al., 2015. Provenance and Depositional History of Continental Slope Sediments in the Southwestern Gulf of Mexico Unraveled by Geochemical Analysis. Continental Shelf Research, 95: 15-26. https://doi.org/10.1016/j.csr.2015.01.003
|
Dai, S. F., Ward, C. R., Graham, I. T., et al., 2017. Altered Volcanic Ashes in Coal and Coal-Bearing Sequences: A Review of Their Nature and Significance. Earth-Science Reviews, 175: 44-74. https://doi.org/10.1016/j.earscirev.2017.10.005
|
Gao, Q. L., Chen, Z. Q., Zhang, N., et al., 2022. Felsic Volcanisms across the Wuchiapingian-Changhsingian Boundary(Late Permian) in the Dawoling Section, Jiahe Area, Hunan Province. Earth Science, 47(8): 2925-2939(in Chinese with English abstract).
|
Gao, X. Y., Shao, L. Y., Wang, X. T., et al., 2022. Astronomical Forcing in Lopingian Coal-Bearing Cycles: A Case Study of Bijie Area in Northwestern Guizhou. Journal of Mining Science & Technology, 7(1): 89-100(in Chinese with English abstract).
|
Hayashi, K. I., Fujisawa, H., Holland, H. D., et al., 1997. Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115-4137. https://doi.org/10.1016/s0016-7037(97)00214-7
|
He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3/4): 391-405. https://doi.org/10.1016/s0012-821x(03)00323-6
|
He, Q., Xiao, L., Balta, B., et al., 2010. Variety and Complexity of the Late-Permian Emeishan Basalts: Reappraisal of Plume-Lithosphere Interaction Processes. Lithos, 119(1/2): 91-107. https://doi.org/10.1016/j.lithos.2010.07.020
|
Huang, K. N., Opdyke, N. D., 1998. Magnetostratigraphic Investigations on an Emeishan Basalt Section in Western Guizhou Province, China. Earth and Planetary Science Letters, 163(1-4): 1-14. https://doi.org/10.1016/s0012-821x(98)00169-1
|
Johnston, M. J. S., Mauk, F. J., 1972. Earth Tides and the Triggering of Eruptions from Mt Stromboli, Italy. Nature, 239: 266-267. https://doi.org/10.1038/239266b0
|
Kiipli, T., Hints, R., Kallaste, T., et al., 2017. Immobile and Mobile Elements during the Transition of Volcanic Ash to Bentonite: An Example from the Early Palaeozoic Sedimentary Section of the Baltic Basin. Sedimentary Geology, 347: 148-159. https://doi.org/10.1016/j.sedgeo.2016.11.009
|
Kutterolf, S., Jegen, M., Mitrovica, J. X., et al., 2013. A Detection of Milankovitch Frequencies in Global Volcanic Activity. Geology, 41(2): 227-230. https://doi.org/10.1130/g33419.1
|
Kutterolf, S., Schindlbeck, J. C., Jegen, M., et al., 2019. Milankovitch Frequencies in Tephra Records at Volcanic Arcs: The Relation of Kyr-Scale Cyclic Variations in Volcanism to Global Climate Changes. Quaternary Science Reviews, 204: 1-16. https://doi.org/10.1016/j.quascirev.2018.11.004
|
Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. https://doi.org/10.1130/g37970.1
|
Liao, Z. W., Hu, W. X., Cao, J., et al., 2016. Heterogeneous Volcanism across the Permian-Triassic Boundary in South China and Implications for the Latest Permian Mass Extinction: New Evidence from Volcanic Ash Layers in the Lower Yangtze Region. Journal of Asian Earth Sciences, 127: 197-210. https://doi.org/10.1016/j.jseaes.2016.06.003
|
Ma, C. Q., Zou, B. W., Huang, G. Z., 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121(in Chinese with English abstract).
|
Ren, Z. Y., Wu, Y. D., Zhang, L., et al., 2017. Primary Magmas and Mantle Sources of Emeishan Basalts Constrained from Major Element, Trace Element and Pb Isotope Compositions of Olivine-Hosted Melt Inclusions. Geochimica et Cosmochimica Acta, 208: 63-85. https://doi.org/10.1016/j.gca.2017.01.054
|
Roy, D. K., Roser, B. P., 2013. Climatic Control on the Composition of Carboniferous-Permian Gondwana Sediments, Khalaspir Basin, Bangladesh. Gondwana Research, 23(3): 1163-1171. https://doi.org/10.1016/j.gr.2012.07.006
|
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
|
Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4
|
Shao, L. Y., Hua, F. H., Yi, T. S., et al., 2021. Sequence-Paleogeography and Coal Accumulation of Lopingian in Guizhou Province. Coal Geology & Exploration, 49(1): 45-56(in Chinese with English abstract).
|
Shen, M. L., Dai, S. F., Graham, I. T., et al., 2021. Mineralogical and Geochemical Characteristics of Altered Volcanic Ashes (Tonsteins and K-Bentonites) from the Latest Permian Coal-Bearing Strata of Western Guizhou Province, Southwestern China. International Journal of Coal Geology, 237: 103707. https://doi.org/10.1016/j.coal.2021.103707
|
Shen, Y. L., Qin, Y., Guo, Y. H., et al., 2012. Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation. Earth Science, 37(3): 573-579(in Chinese with English abstract).
|
Sternai, P., Caricchi, L., Garcia-Castellanos, D., et al., 2017. Magmatic Pulse Driven by Sea-Level Changes Associated with the Messinian Salinity Crisis. Nature Geoscience, 10: 783-787. https://doi.org/10.1038/ngeo3032
|
Tian, J., Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract).
|
Wang, F. L., Wang, C. Y., Zhao, T. P., 2015. Boron Isotopic Constraints on the Nb and Ta Mineralization of the Syenitic Dikes in the ~260 Ma Emeishan Large Igneous Province (SW China). Ore Geology Reviews, 65: 1110-1126. https://doi.org/10.1016/j.oregeorev.2014.09.009
|
Wang, H., Shao, L. Y., Hao, L. M., et al., 2011. Sedimentology and Sequence Stratigraphy of the Lopingian (Late Permian) Coal Measures in Southwestern China. International Journal of Coal Geology, 85(1): 168-183. https://doi.org/10.1016/j.coal.2010.11.003
|
Wang, X. T., Shao, L. Y., Eriksson, K. A., et al., 2020. Evolution of a Plume-Influenced Source-to-Sink System: An Example from the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224
|
Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
|
Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002
|
Xie, G. L., Shen, Y. L., Liu, S. G., et al., 2018. Trace and Rare Earth Element (REE) Characteristics of Mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for Provenance, Depositional Conditions and Paleoclimate. Marine and Petroleum Geology, 92: 20-36. https://doi.org/10.1016/j.marpetgeo.2018.02.019
|
Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1
|
Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39(in Chinese with English abstract).
|
Yang, T. Y., Shen, Y. L., Qin, Y., et al., 2021. Distribution of Radioactive Elements (Th, U) and Formation Mechanism of the Bottom of the Lopingian (Late Permian) Coal-Bearing Series in Western Guizhou, SW China. Journal of Petroleum Science and Engineering, 205: 108779. https://doi.org/10.1016/j.petrol.2021.108779
|
Yu, X., Yang, J. H., Liu, J. Z., et al., 2017. Provenance of the Late Permian Longtan Formation in SW Guizhou Province and Implication for Reconstruction of Regional Sedimentation and Paleogeography. Acta Geologica Sinica, 91(6): 1374-1385(in Chinese with English abstract).
|
Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. South China Continental Structure and Problems. Scientia Sinica (Terrae), 43(10): 1553-1582(in Chinese).
|
Zhao, L. X., Dai, S. F., Graham, I. T., et al., 2016. New Insights into the Lowest Xuanwei Formation in Eastern Yunnan Province, SW China: Implications for Emeishan Large Igneous Province Felsic Tuff Deposition and the Cause of the End-Guadalupian Mass Extinction. Lithos, 264: 375-391. https://doi.org/10.1016/j.lithos.2016.08.037
|
Zhao, Y., 2021. High Frequency Sequence Stratigraphy of Late Permian Coal Measures in Liupanshui Area Western Guizhou Constrained by Event Layers (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
|
Zhou, Y. P., Bohor, B. F., Ren, Y. L., 2000. Trace Element Geochemistry of Altered Volcanic Ash Layers (Tonsteins) in Late Permian Coal-Bearing Formations of Eastern Yunnan and Western Guizhou Provinces, China. International Journal of Coal Geology, 44(3-4): 305-324. https://doi.org/10.1016/s0166-5162(00)00017-3
|
Zong, Y., Shen, Y. L., Qin, Y., et al., 2019. High Frequency Cyclic Sequence Based on the Milankovitch Cycles in Upper Permian Coal Measures in Panxian, Western Guizhou Province. Geological Journal of China Universities, 25(4): 598-609(in Chinese with English abstract).
|
高秋灵, 陈中强, 张宁, 等, 2022. 湖南嘉禾大窝岭剖面晚二叠世吴家坪期-长兴期之交长英质火山作用记录. 地球科学, 47(8): 2925-2939. doi: 10.3799/dqkx.2022.175
|
高祥宇, 邵龙义, 王学天, 等, 2022. 乐平统含煤岩系旋回地层的天文周期驱动: 以黔西北毕节地区为例. 矿业科学学报, 7(1): 89-100.
|
马昌前, 邹博文, 黄贵治, 2022. 火山喷发机制、气候效应及火山地球工程. 地球科学, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
|
邵龙义, 华芳辉, 易同生, 等, 2021. 贵州省乐平世层序–古地理及聚煤规律. 煤田地质与勘探, 49(1): 45-56.
|
沈玉林, 秦勇, 郭英海, 等, 2012. "多层叠置独立含煤层气系统" 形成的沉积控制因素. 地球科学, 37(3): 573-579. doi: 10.3799/dqkx.2012.064
|
田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
|
徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39.
|
于鑫, 杨江海, 刘建中, 等, 2017. 黔西南晚二叠世龙潭组物源分析及区域沉积古地理重建. 地质学报, 91(6): 1374-1385.
|
张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582.
|
赵勇, 2021. 以事件层为约束的黔西六盘水地区晚二叠世煤系高频层序地层(硕士学位论文). 徐州: 中国矿业大学.
|
宗毅, 沈玉林, 秦勇, 等, 2019. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究. 高校地质学报, 25(4): 598-609.
|
![]() |
![]() |