• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Che Dong, Zheng Mianping, Zhao Yuanyi, Zhang Zhaozhi, 2024. Potassic-Ultrapotassic Volcanic Rocks in the Lhasa Block may be Highly Differentiated Rocks: Evidence from Rubidium and Cesium Enrichment. Earth Science, 49(3): 850-867. doi: 10.3799/dqkx.2023.135
    Citation: Che Dong, Zheng Mianping, Zhao Yuanyi, Zhang Zhaozhi, 2024. Potassic-Ultrapotassic Volcanic Rocks in the Lhasa Block may be Highly Differentiated Rocks: Evidence from Rubidium and Cesium Enrichment. Earth Science, 49(3): 850-867. doi: 10.3799/dqkx.2023.135

    Potassic-Ultrapotassic Volcanic Rocks in the Lhasa Block may be Highly Differentiated Rocks: Evidence from Rubidium and Cesium Enrichment

    doi: 10.3799/dqkx.2023.135
    • Received Date: 2022-12-13
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • Post-collisional potassic-ultrapotassic volcanic rocks are widely developed in the Lhasa block, Qiangtang block and Songpan-Ganzi-Kekexili block in the Qinghai-Xizang region. Many previous studies on the potassic-ultrapotassic volcanic rocks in this area show the supernormal enrichment of trace alkali elements such as Rb and Cs in the Lhasa block is much higher than those in other two blocks. In order to quantify this phenomenon and to investigate the causes of enrichment, this paper quantifies the enrichment degree of trace alkali elements in the three blocks, and has attained a preliminary understanding of the causes of enrichment, based on the measured and published data, using statistical methods such as box-plot and systematic mineralogical and geochemical analysis methods, It is concluded that the high degree of magmatic differentiation in the potassic-ultrapotassic volcanic rocks of the Lhasa block is the main cause of the rare alkali elements enrichment of Rb and Cs, and the enrichment zones are mainly located in the central and western part of the Lhasa block, where the volcanic rocks range in age from 25 to 13 Ma. The discrimination range of Zr/Hf and Nb/Ta with high degree of differentiation of potassic-ultrapotassic volcanic rocks in the Lhasa block is also delineated by analogy with the results of highly differentiated granites.

       

    • loading
    • Ahrens, L. H., Pinson, W. H., Kearns, M. M., 1952. Association of Rubidium and Potassium and Their Abundance in Common Igneous Rocks and Meteorites. Geochimica et Cosmochimica Acta, 2(4): 229-242. https://doi.org/10.1016/0016-7037(52)90017-3
      Bouseily, A. M., Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7
      Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2006. Origin of the Miocene Bugasi Group Volcanic Rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petrologica Sinica, 22(3): 585-594 (in Chinese with English abstract).
      Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract).
      Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source? Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003
      Chi, X. G., Dong, C. Y., Liu, J. F., et al., 2006. High Mg# and Low Mg# Potassic-Ultrapotassic Volcanic Rocks and Their Source Nature on the Tibetan Plateau. Acta Petrologica Sinica, 22(3): 595-602 (in Chinese with English abstract).
      Clague, D. A., 1978. The Oceanic Basalt-Trachyte Association: An Explanation of the Daly Gap. Journal of Geology, 86(6): 739-743. https://doi.org/10.1086/649740
      Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821X(86)90186-X
      Ding, L., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061
      Ding, L., Yue, Y. H., Cai, F. L., et al., 2006. 40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet: Implications in the Onset Time and Depth of NS-Striking Rift System. Acta Geologica Sinica, 80(9): 1252-1261 (in Chinese with English abstract).
      Ding, L., Zhang, J. J., Zhou, Y., et al., 1999. Tectonic Implication on the Lithosphere Evolution of the Tibet Plateau: Petrology and Geochemistry of Sodic and Ultrapotassic Volcanism in Northern Tibet. Acta Petrologica Sinica, 15(3): 408-420 (in Chinese with English abstract).
      Dong, C. Y., 2006. Genesis Study on Cenozoic High Mg# Potassic Volcanic Rocks in Qiangtang, Northern Qinghai-Tibet Plateau (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Dong, Y. H., Wang, Q., Xu, J. F., et al., 2008. Dongyue Lake Adakitic Volcanic Rocks with High Mg# in North Qiangtang Block: Petrogenesis and Its Tectonic Implication. Acta Petrologica Sinica, 24(2): 291-302 (in Chinese with English abstract).
      Fan, L. F., 2015. Geochemistry of the Cenozoic Bamaoqiongzong Voicanic Rocksin Qiangtang and Its Tectonic Evolution of Lithosphere (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Gao, L. E., Zeng, L. S., Yan, L. L., et al., 2022. Changes in the Melt Structure and Enrichment of Rare Metals W-Sn-Nb-Ta in Granitic Magma: An Example from the Xiaru Early Paleozoic Granites. Acta Petrologica Sinica, 38(11): 3281-3301 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.02
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X
      Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007
      Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10): 899. https://doi.org/10.1130/0091-7613(1997)0250899: niitoo>2.3.co;2 doi: 10.1130/0091-7613(1997)0250899:niitoo>2.3.co;2
      Hildreth, W., 2004. Volcanological Perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several Contiguous but Discrete Systems. Journal of Volcanology and Geothermal Research, 136(3-4): 169-198. https://doi.org/10.1016/j.jvolgeores.2004.05.019
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hu, W. J., Tian, S. H., Yang, Z. S., et al., 2012. Petrogenesis of Miocene Chajiasi Potassic Rocks in Western Lhasa Block Tibetan Plateau: Constraints from Litho Geochemistry Geochronology and Sr-Nd Isotopes. Mineral Deposits, 31(4): 813-830 (in Chinese with English abstract).
      Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7
      Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4
      Jiang, D. H., Liu, J. Q., Ding, L., 2008. Geochemistry and Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Hoh Xil Area, Northern Tibet Plateau. Acta Petrologica Sinica, 24(2): 279-290 (in Chinese with English abstract).
      Jiang, S. Y., Wang, W., 2022. How does Hyper- Enrichment of Strategic Key Metals Occur in Mineralization? Earth Science, 47(10): 3869-3871 (in Chinese with English abstract).
      Jiang, Y. S., Zhou, Y. Y., Wang, M. G., et al., 2003. Characteristics and Geological Significance of Quaternary Volcanic Rocks in the Central Segment of the Gangdise Area. Regional Geology of China, 22(1): 16-20 (in Chinese with English abstract).
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Lai, S. C., Liu, C. Y., Yi, H. S., 2003. Geochemistry and Petrogenesis of Cenozoic Andesite-Dacite Associations from the Hoh Xil Region, Tibetan Plateau. International Geology Review, 45(11): 998-1019. https://doi.org/10.2747/0020-6814.45.11.998
      Lai, S. C., Liu, C. Y., O'Reilly, S. Y., et al., 2001. The Genesis of the Neotertiary High-Potassium Calc-Alkaline Volcanic System of North Qiangtang and Its Continental Dynamics Significance. Science in China (Series D), 31(Suppl. ): 34-42 (in Chinese).
      Lai, S. C., Qin, J. F., Li, Y. F., et al., 2007. Geochemistry and Petrogenesis of the Alkaline and Caic-Alkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain, Tibetan Plateau. Acta Petrologica Sinica, 23(4): 709-718 (in Chinese with English abstract).
      Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040
      Li, X. H., Liu, Y., Tu, X. L., et al., 2002. Precise Determination of Chemical Compositions in Silicate Rocks Using ICP AESand ICP MS: A Comparative Study of Sample Digestion Techniquesof Alkali Fusion and Acid Dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract).
      Li, Y. L., Zhang, H. F., Guo, J. H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: a Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. Chemical Geology, 450: 165-182. https://doi.org/10.1016/j.chemgeo.2016.12.029
      Lin, J. H., 2003. Cenozoic High-Potassium Calc-Alkaline Volcanic Rocks and Crust-Mantle Interaction in Northern Tibet Plateau (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. https://doi.org/10.1016/S0016-7037(02)00924-9
      Liu, D., 2017. Geochemistry and Petrogenesis of the Postcollisional Potassic-Ultrapotassic Rocks in Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Liu, S., Hu, R. Z., Chi, X. G., et al., 2003. Geochemical Characteristics and Petrogenesis of the Post Collision Ultrapotassium Volcanic Rocks in Qiangtang Rock Zone. Geotectonica et Metallogenia, 27(2): 167-175 (in Chinese with English abstract).
      Liu, Y. F., Xu, J. F., Zhang, Z. F., et al., 2018. Ca-Mg Isotopic Compositions of Ultra-Potassic Volcanic Rocks in the Lhasa Terrane, Southern Tibet and Their Geological Implications. Acta Geologica Sinica, 92(3): 545-559 (in Chinese with English abstract).
      Mahood, G., Hildreth, W., 1983. Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30. https://doi.org/10.1016/0016-7037(83)90087-X
      Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399
      Mo, X. X., Zhao, Z. D., Yu, X. H., et al., 2009. Cenozoic Collisional-Post-Collisional Igneous Rocks of the Qinghai-Tibet Plateau. Geological Publishing House, Beijing (in Chinese).
      Murray, M. M., Rogers, J. J. W., 1973. Distribution of Rubidium and Strontium in the Potassium Feldspars of Two Granite Batholiths. Geochemical Journal, 6(3): 117-130. https://doi.org/10.2343/geochemj.6.117
      Münker, C., Pfänder, J. A., Weyer S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629): 84-87. https://doi.org/10.1126/science.1084662
      Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/S0012-821X(04)00072-X
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Harlow. https://doi.org/10.1017/9781108777834
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekianeds, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Stepanov, A. S., Mavrogenes, J. A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009. https://doi.org/10.1007/s00410-014-1009-3
      Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau: Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S. R., Heier, K. S., 1960. The Petrological Significance of Trace Element Variations in Alkali Feldspars. The XXI International Geological Congress, Copenhagen.
      Wang, B. D., Chen, L. K., Xu, J. F., et al., 2011. Identification and Petrogenesis of Potassic Volcanic Rocks with "Ultrapotassic" Characteristics from Maqiang Area in Lhasa Block. Acta Petrologica Sinica, 27(6): 1662-1674 (in Chinese with English abstract).
      Wang, B. D., Xu, J. F., Zhang, X. G., et al., 2008. Petrogenesis of Miocene Volcanic Rocks in the Sailipu Area, Western Tibetan Plateau: Geochemical and Sr-Nd Isotopic Constraints. Acta Petrologica Sinica, 24(2): 265-278 (in Chinese with English abstract).
      Wang, C. S., 2001. The Geological Evolution and Prospective Oil and Gas Assessment of the Qiangtang Basin in Northern Tibetan Plateau. Geological Publishing House, Beijing (in Chinese).
      Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, F. Y., Lu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese).
      Xia, B., Lin, Q. C., Zhang, Y. Q., et al., 2006. The Types of Volcanic Rocks for the Bamaoqiongzong-Yongbocuo and Qiangbaqian in the Northern Tibet the Dating of 40Ar-39Ar and Its Geological Implications. Acta Geologica Sinica, 80(11): 1676-1682 (in Chinese with English abstract).
      Xiang, Y. X., Yang, J. H., Chen, J. Y., et al., 2017. Petrogenesis of Lingshan Highly Fractionated Granites in the Southeast China: Implication for Nb-Ta Mineralization. Ore Geology Reviews, 89: 495-525. https://doi.org/10.1016/j.oregeorev.2017.06.029
      Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218-219: 54-72. https://doi.org/10.1016/j.lithos.2015.01.004
      Xu, L. K., 2019. Chronology, Geochemistry and Rock Genesis of Potassium-Ultrapotassium Volcanic Rocks in the Temple Group of the Middle Section of Lhasa Block (Disseration). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhai, Q. G., Li, C., Wang, J., et al., 2009. 40Ar/39Ar Dating for Cenozoic Potassic Volcanic Rocks in Northern Gemucuo from Qiangtang, Northern Tibet, China. Geological Bulletin of China, 28(9): 1221-1228 (in Chinese with English abstract).
      Zhang, R., 2018. Petrogenesis of the Cenozoic Alkaline Potassic Ultrapotassic Volcanic Rocks from Qiangtang, Northern Tibet (Disseration). Jilin University, Changchun (in Chinese with English abstract).
      Zhang, Y. L., 2018. Geological Characteristics of Cenozoic Volcanic Rocks and Its Geodynamic Implication in Shiquanhe-Gerze Area on Qinghai-Tibet Pleatue (Disseration). China University of Geoscience, Beijing (in Chinese with English abstract).
      Zhao, Z., Chi, X. G., Liu, J. F., et al., 2009. Geochemical Feature and Its Tectonic Significance of Gemucuo Oligocene Potassic Volcanic Rocks in the Qiangtang Area, Tibet, China. Geological Bulletin of China, 28(4): 463-473 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.04.007
      Zhao, Z. D., Mo, X. X., Zhu, D. C., et al., 2009. Petrogenesis and Implications of the Volcanic Rocks in Zabuye Salt Lake Area, Western Lhasa Terrane, Tibet, China. Geological Bulletin of China, 28(12): 1730-1740 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.12.007
      Zheng, M. P., Wang, Q. X., Duo, J., et al., 1995. A New Type of Hydrothermal Deposit: Cesium Bearing Geyserite in Tibet. Geological Publishing House, Beijing (in Chinese).
      Zheng, M. P., Chen, W. X., Qi, W., 2016. New Findings and Perspective Analysis of Prospecting for Volcanic Sedimentary Boron Deposits in the Tibetan Plateau. Acta Geoscientica Sinica, 37(4): 407-418 (in Chinese with English abstract).
      陈建林, 许继峰, 康志强, 等, 2006. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因. 岩石学报, 22(3): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603007.htm
      陈建林, 许继峰, 康志强, 等, 2007. 青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因. 地球化学, 36(5): 437-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200705003.htm
      迟效国, 董春艳, 刘建峰, 等, 2006. 青藏高原高Mg#和低Mg#两类钾质-超钾质火山岩及其源区性质. 岩石学报, 22(3): 595-602. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603008.htm
      丁林, 岳雅慧, 蔡福龙, 等, 2006. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约. 地质学报, 80(9): 1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003
      丁林, 张进江, 周勇, 等, 1999. 青藏高原岩石圈演化的记录: 藏北超钾质及钠质火山岩的岩石学与地球化学特征. 岩石学报, 15(3): 408-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903008.htm
      董春艳, 2006. 藏北羌塘新生代高Mg#钾质火山岩的成因研究(博士学位论文). 长春: 吉林大学.
      董彦辉, 王强, 许继峰, 等, 2008. 羌塘地块北部东月湖始新世高Mg#埃达克质火山岩的成因以及构造意义. 岩石学报, 24(2): 291-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802011.htm
      范乐夫, 2015. 羌塘巴毛穷宗新生代火山岩地球化学特征及岩石圈构造演化(硕士学位论文). 长春: 吉林大学.
      高利娥, 曾令森, 严立龙, 等, 2022. 花岗质熔体结构的改变与稀有金属W-Sn-Nb-Ta的富集: 以夏如早古生代花岗岩为例. 岩石学报, 38(11): 3281-3301. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202211003.htm
      胡文洁, 田世洪, 杨竹森, 等, 2012. 拉萨地块西段中新世查加寺钾质火山岩岩石成因: 岩石地球化学、年代学和Sr-Nd同位素约束. 矿床地质, 31(4): 813-830. doi: 10.3969/j.issn.0258-7106.2012.04.011
      江东辉, 刘嘉麒, 丁林, 2008. 青藏高原北部可可西里地区新生代钾质火山岩地球化学特征及成因. 岩石学报, 24(2): 279-290. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802010.htm
      蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的? 地球科学, 47(10): 3869-3871. doi: 10.3799/dqkx.2022.844
      江元生, 周幼云, 王明光, 等, 2003. 西藏冈底斯山中段第四纪火山岩特征及地质意义. 地质通报, 22(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200301002.htm
      赖绍聪, 刘池阳, O'Reilly, S. Y., 等, 2001. 北羌塘新第三纪高钾钙碱性火山岩系的成因及其大陆动力学意义. 中国科学(D辑), 31(增刊): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1005.htm
      赖绍聪, 秦江锋, 李永飞, 等, 2007. 青藏高原新生代火车头山碱性及钙碱性两套火山岩的地球化学特征及其物源讨论. 岩石学报, 23(4): 709-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704004.htm
      李献华, 刘颖, 涂湘林, 等, 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203009.htm
      林金辉, 2003. 藏北高原新生代高钾钙碱性系列火山岩与壳-幔相互作用(博士学位论文). 成都: 成都理工大学.
      刘栋, 2017. 青藏高原后碰撞钾-超钾质岩石的地球化学特征与岩石成因(博士学位论文). 北京: 中国地质大学.
      刘燊, 胡瑞忠, 迟效国, 等, 2003. 羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨. 大地构造与成矿学, 27(2): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200302009.htm
      刘峪菲, 许继峰, 张兆峰, 等, 2018. 青藏高原拉萨地块中西部超钾质岩Ca-Mg同位素特征及其地质意义. 地质学报, 92(3): 545-559. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201803009.htm
      莫宣学, 赵志丹, 喻学惠, 等, 2009. 青藏高原新生代碰撞-后碰撞火成岩. 北京: 地质出版社.
      孙晨光, 赵志丹, 莫宣学, 等, 2008. 青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因: 锆石U-Pb年代学和Hf同位素制约. 岩石学报, 24(2): 249-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202111019.htm
      王保弟, 陈陵康, 许继峰, 等, 2011. 拉萨地块麻江地区具有"超钾质" 成分的钾质火山岩的识别及成因. 岩石学报, 27(6): 1662-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106008.htm
      王保弟, 许继峰, 张兴国, 等, 2008. 青藏高原西部赛利普中新世火山岩源区: 地球化学及Sr-Nd同位素制约. 岩石学报, 24(2): 265-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202312012.htm
      王成善, 2001. 西藏羌塘盆地地质演化与油气远景评价. 北京: 地质出版社.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202201006.htm
      夏斌, 林清茶, 张玉泉, 等, 2006. 西藏北部巴毛穷宗-涌波错-羌巴欠火山岩类型、40Ar-39Ar年龄及其地质意义. 地质学报, 80(11): 1676-1682. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200611004.htm
      徐立坤, 2019. 拉萨地块中段查孜地区布嘎寺组钾质-超钾质火山岩年代学、地球化学与岩石成因(硕士学位论文). 成都: 成都理工大学.
      翟庆国, 李才, 王军, 等, 2009. 藏北羌塘戈木错北部新生代钾质火山岩40Ar/39Ar定年. 地质通报, 28(9): 1221-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200909010.htm
      张蕊, 2018. 藏北羌塘新生代碱性钾质-超钾质火山岩成因研究(博士学位论文). 长春: 吉林大学.
      张耀玲, 2018. 青藏高原狮泉河-改则一带新生代火山岩地质特征及其动力学意义(博士学位论文). 北京: 中国地质大学.
      赵芝, 迟效国, 刘建峰, 等, 2009. 西藏羌塘地区戈木错渐新世钾质火山岩的地球化学特征及其构造意义. 地质通报, 28(4): 463-473. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904009.htm
      赵志丹, 莫宣学, 朱弟成, 等, 2009. 西藏拉萨地块西部扎布耶茶卡火山岩的成因与意义. 地质通报, 28(12): 1730-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912008.htm
      郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型: 西藏铯硅华矿床. 北京: 地质出版社.
      郑绵平, 陈文西, 齐文, 2016. 青藏高原火山-沉积硼矿找矿的新发现与远景分析. 地球学报, 37(4): 407-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201604003.htm
    • dqkxzx-49-3-850-附表.doc
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (380) PDF downloads(50) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return