• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Tong Xirun, Li Xiaodan, Qiu Xiaofei, Lin Jie, Lu Shansong, 2024. An Improved Faraday Cup Configuration and Its Applying in Sr Isotopic Analysis of Rich⁃REE Apatite by LA⁃MC⁃ICP⁃MS. Earth Science, 49(11): 3904-3916. doi: 10.3799/dqkx.2023.136
    Citation: Tong Xirun, Li Xiaodan, Qiu Xiaofei, Lin Jie, Lu Shansong, 2024. An Improved Faraday Cup Configuration and Its Applying in Sr Isotopic Analysis of Rich⁃REE Apatite by LA⁃MC⁃ICP⁃MS. Earth Science, 49(11): 3904-3916. doi: 10.3799/dqkx.2023.136

    An Improved Faraday Cup Configuration and Its Applying in Sr Isotopic Analysis of Rich⁃REE Apatite by LA⁃MC⁃ICP⁃MS

    doi: 10.3799/dqkx.2023.136
    • Received Date: 2023-05-23
    • Publish Date: 2024-11-25
    • It is still difficult to accurately correct the interferences of REE2+ in Sr isotopic analysis by LA-MC-ICP-MS. In this study, we corrected the interferences of REE2+ by RPSM (Routine Peak Stripping Method) combining use of an improved cup configuration of MC-ICP-MS allowing for synchronic detection of REE2+ signals. The effectiveness of IFCC (Improved Faraday Cup Configuration) was evaluated with respect to both the synchrony and the ratios of REE2+ signals. With IFCC, no decoupling of REE2+ signals was observed. This finding indicates that IFCC is well suited for RPSM to correct the interferences of REE2+. The ratios of REE2+ signals (r: 166, 168, 170Er2+/167Er2+170, 172, 174, 176Yb2+/173Yb2+) are approximately equal to (r/R≈1) the natural isotopic abundant ratios of Er an Yb (R: 166, 168, 170Er/167Er和170, 172, 174, 176Yb/173Yb). This property cause IFCC to be well suited to correct interferences of REE2+ with the R and the measured signals of 167Er2+ and 173Yb2+. We also determined the Sr isotopic compositions of the Er and Yb-spiked 0.1 μg/g NBS987 Sr solutions by SN-MC-ICP-MS with IFCC, and the results attest that the interferences of REE2+ in the solutions with Sr/Er≥3 can be corrected using the RPSM (R as the interference correction factor), and those in the solutions with Sr/Er≥1 can be corrected using the EPSM (Enhanced Peak Stripping Method, measured r as the interference correction factor). Sr isotopic compositions of two rich-REE reference materials (Durango with Sr/Er=7.4, and UWA-1 with Sr/Er=2.8) were determined by LA-MC-ICP-MS with IFCC, and the determined 87Sr/86Sr of the two reference materials are 0.706 27±0.000 14 (2SD, n=19) and 0.704 76±0.000 19 (2SD, n=20), respectively, both of which agree with previously published values (determined by TIMS or MC-ICP-MS) within uncertainties.

       

    • loading
    • Bizzarro, M., Simonetti, A., Stevenson, R. K., et al., 2003. In Situ 87Sr/86Sr Investigation of Igneous Apatites and Carbonates Using Laser⁃Ablation MC⁃ICP⁃MS. Geochimica et Cosmochimica Acta, 67(2): 289-302. https://doi.org/10.1016/S0016⁃7037(02)01048⁃7
      Bruand, E., Fowler, M., Storey, C., et al., 2017. Apatite Trace Element and Isotope Applications to Petrogenesis and Provenance. American Mineralogist, 102(1): 75-84. https://doi.org/10.2138/am⁃2017⁃5744
      Charlier, B. L. A., Ginibre, C., Morgan, D., et al., 2006. Methods for the Microsampling and High⁃Precision Analysis of Strontium and Rubidium Isotopes at Single Crystal Scale for Petrological and Geochronological Applications. Chemical Geology, 232(3-4): 114-133. https://doi.org/10.1016/j.chemgeo.2006.02.015
      Christensen, J. N., Halliday, A. N., Lee, D. C., et al., 1995. In Situ Sr Isotopic Analysis by Laser Ablation. Earth and Planetary Science Letters, 136(1): 79-85. https://doi.org/10.1016/0012⁃821X(95)00181⁃6
      de Laeter, J. R., Böhlke, J. K., De Bièvre, P., et al., 2003. Atomic Weights of the Elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75(6): 683-800. https://doi.org/10.1351/pac200375060683
      Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP⁃MS. Applied Surface Science, 127: 278-286. https://doi.org/10.1016/S0169⁃4332(97)00643⁃0
      Ehrlich, S., Gavrieli, I., Dor, L. B., et al., 2001. Direct High⁃Precision Measurements of the 87Sr/86Sr Isotope Ratio in Natural Water, Carbonates and Related Materials by Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 16(12): 1389-1392. https://doi.org/10.1039/b107996b
      Guillong, M., Horn, I., Günther, D., 2003. A Comparison of 266 nm, 213 nm and 193 nm Produced from a Single Solid State Nd: YAG Laser for Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 18(10): 1224-1230. https://doi.org/10.1039/B305434A
      Hart, S., Ball, L., Jackson, M., 2005. Sr Isotope by Laser Ablation PIMMS: Application to Cpx from Samoan Peridotite Xenoliths. WHOI Plasma Facility Open File Technical Report.
      Horstwood, M. S. A., Evans, J. A., Montgomery, J., 2008. Determination of Sr Isotopes in Calcium Phosphates Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Their Application to Archaeological Tooth Enamel. Geochimica et Cosmochimica Acta, 72(23): 5659-5674. https://doi.org/10.1016/j.gca.2008.08.016
      Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J
      Jochum, K. P., Stoll, B., Weis, U., et al., 2009. In Situ Sr Isotopic Analysis of Low Sr Silicates Using LA⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 24(9): 1237-1243. https://doi.org/10.1039/B905045K
      Lewis, J., Coath, C. D., Pike, A. W. G., 2014. An Improved Protocol for 87Sr/86Sr by Laser Ablation Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry Using Oxide Reduction and a Customised Plasma Interface. Chemical Geology, 390: 173-181. https://doi.org/10.1016/j.chemgeo.2014.10.021
      Lin, J., Liu, Y. S., Chen, H. H., et al., 2015. Review of High⁃Precision Sr Isotope Analyses of Low⁃Sr Geological Samples. Journal of Earth Science, 26(5): 763-774. https://doi.org/10.1007/s12583⁃015⁃0593⁃0
      Meija, J., Coplen, T. B., Berglund, M., et al., 2016. Isotopic Compositions of the Elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3): 293-306. https://doi.org/10.1515/pac⁃2015⁃0503
      Müller, W., Anczkiewicz, R., 2016. Accuracy of Laser⁃Ablation (LA)⁃MC⁃ICPMS Sr Isotope Analysis of (Bio)Apatite: A Problem Reassessed. Journal of Analytical Atomic Spectrometry, 31(1): 259-269. https://doi.org/10.1039/c5ja00311c
      Munoz, P. M., Alves, A., Azzone, R. G., et al., 2016. In Situ Sr Isotope Analyses by LA⁃MC⁃ICP⁃MS of Igneous Apatite and Plagioclase from Magmatic Rocks at the CPGeo⁃USP. Brazilian Journal of Geology, 46(suppl. 1): 227⁃243.
      Paton, C., Woodhead, J. D., Hergt, J. M., et al., 2007. Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 31(4): 321-330. https://doi.org/10.1111/j.1751⁃908x.2007.00131.x
      Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA⁃MC⁃ICPMS. Chemical Geology, 211(1-2): 135-158. https://doi.org/10.1016/j.chemgeo.2004.06.025
      Russell, W. A., Papanastassiou, D. A., Tombrello, T. A., 1978. Ca Isotope Fractionation on the Earth and Other Solar System Materials. Geochimica et Cosmochimica Acta, 42(8): 1075-1090. https://doi.org/10.1016/0016⁃7037(78)90105⁃9
      Simonetti, A., Buzon, M. R., Creaser, R. A., 2008. In⁃Situ Elemental and Sr Isotope Investigation of Human Tooth Enamel by Laser Ablation⁃(MC)⁃ICP⁃MS: Successes and Pitfalls. Archaeometry, 50(2): 371-385. https://doi.org/10.1111/j.1475⁃4754.2007.00351.x
      Sun, C. Y., Cawood, P. A., Xu, W. L., et al., 2022. In Situ Geochemical Composition of Apatite in Granitoids from the Eastern Central Asian Orogenic Belt: A Window into Petrogenesis. Geochimica et Cosmochimica Acta, 317: 552-573. https://doi.org/10.1016/j.gca.2021.10.028
      Sun, J. F., Yang, J. H., Wu, F. Y., 2009. Application of In⁃Situ Isotopic Analysis to Granite Genesis. Earth Science Frontiers, 16(2): 129-139 (in Chinese with English abstract).
      Vroon, P. Z., van der Wagt, B., Koornneef, J. M., et al., 2008. Problems in Obtaining Precise and Accurate Sr Isotope Analysis from Geological Materials Using Laser Ablation MC⁃ICPMS. Analytical and Bioanalytical Chemistry, 390(2): 465-476. https://doi.org/10.1007/s00216⁃007⁃1742⁃9
      Waight, T., Baker, J., Peate, D., 2002. Sr Isotope Ratio Measurements by Double⁃Focusing MC⁃ICPMS: Techniques, Observations and Pitfalls. International Journal of Mass Spectrometry, 221(3): 229-244. https://doi.org/10.1016/S1387⁃3806(02)01016⁃3
      Woodhead, J., Swearer, S., Hergt, J., et al., 2005. In Situ Sr⁃Isotope Analysis of Carbonates by LA⁃MC⁃ICP⁃MS: Interference Corrections, High Spatial Resolution and an Example from Otolith Studies. Journal of Analytical Atomic Spectrometry, 20(1): 22-27. https://doi.org/10.1039/B412730G
      Yang, Y. H., Wu, F. Y., Xie, L. W., et al., 2014a. Re⁃Evaluation of Interferences of Doubly Charged Ions of Heavy Rare Earth Elements on Sr Isotopic Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 97: 118-123. https://doi.org/10.1016/j.sab.2014.05.006
      Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014b. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U⁃Th⁃Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012
      Yang, Y. H., Wu, F. Y., Xie, L. W., et al., 2009. In⁃Situ Sr Isotopic Measurement of Natural Geological Samples by LA⁃MC⁃ICP⁃MS. Acta Petrologica Sinica, 25(12): 3431-3441 (in Chinese with English abstract).
      Yang, Z. P., Fryer, B. J., Longerich, H. P., et al., 2011.785 nm Femtosecond Laser Ablation for Improved Precision and Reduction of Interferences in Sr Isotope Analyses Using MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 26(2): 341-351. https://doi.org/10.1039/C0JA00131G
      Zhu, L., Zhang, G. L., Liu, Y. S., et al., 2020. Improved In⁃Situ Determination of Sr Isotope Ratio in Silicate Samples Using LA⁃MC⁃ICP⁃MS and Its Wider Application for Fused Rock Powder. Journal of Earth Science, 31(2): 262-270. https://doi.org/10.1007/s12583⁃019⁃1214⁃0
      Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2007. Spatial Variations of Trace Element and Sr Isotopic Compositions of Apatite in Eclogite from the CCSD Main Hole. Acta Petrologica Sinica, 23(12): 3267-3274 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.12.019
      孙金凤, 杨进辉, 吴福元, 2009. 原位微区同位素分析在花岗岩成因研究中的应用. 地学前缘, 16(2): 129-139. doi: 10.3321/j.issn:1005-2321.2009.02.009
      杨岳衡, 吴福元, 谢烈文, 等, 2009. 地质样品Sr同位素激光原位等离子体质谱(LA⁃MC⁃ICP⁃MS)测定. 岩石学报, 25(12): 3431-3441.
      宗克清, 刘勇胜, 高长贵, 等, 2007. CCSD主孔榴辉岩中磷灰石微区微量元素和Sr同位素组成研究. 岩石学报, 23(12): 3267-3274. doi: 10.3969/j.issn.1000-0569.2007.12.019
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(5)

      Article views (303) PDF downloads(58) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return