• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Ren Chunmeng, Zheng Yuanchuan, Li Xin, Gao Lei, Xu Peiyan, Wu Changda, Yang Zhusen, 2024. Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet. Earth Science, 49(10): 3610-3628. doi: 10.3799/dqkx.2023.139
    Citation: Ren Chunmeng, Zheng Yuanchuan, Li Xin, Gao Lei, Xu Peiyan, Wu Changda, Yang Zhusen, 2024. Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet. Earth Science, 49(10): 3610-3628. doi: 10.3799/dqkx.2023.139

    Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet

    doi: 10.3799/dqkx.2023.139
    • Received Date: 2023-03-13
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • The Ramba leucogranite, located in the eastern part of the Northern Himalaya, is mainly composed of two-mica granite. The amphibolite in contact with it is commonly skarnized and accompanied by scheelite mineralization. To qualify the diagenetic and metallogenic ages and the ore-forming fluid characters, an integrated approach involving zircon U-Pb and mica Ar-Ar dating, and mineral geochemistry was carried out. The Ar-Ar age (6.3 Ma) of muscovite from the scheelite-bearing quartz vein yielded is comparable to the zircon U-Pb age (7.3 Ma) of two-mica granite, indicating that the granite emplacement and associated tungsten mineralization both occurred in the Late Miocene, which is the youngest known rare-metal mineralization event in the region. The iron ratios of garnet and pyroxene mineral pairs within the scheelite-bearing skarn (3.12 to 3.74), and the relatively low Mo content (12.0×10-6-56.8×10-6) of scheelite, collectively indicate that the ore-forming fluid is reduced, which is consistent with the magmatic zircon oxygen fugacity calculated results (ΔFMQ=-5.78 to -2.08). The rare-earth element characteristics of scheelite are inherited from the leucogranite granite, further indicating that the W-rich ore-forming fluid was dissolved from the evolved granitic melt and subsequently reacted with the Ca-rich wall rocks to induce the precipitation of scheelite. This study reveals that the contact metamorphic zone between Himalayan leucogranite and surrounding wall rock is a favorable site for rare-metals, and deserves attention in future prospecting.

       

    • 致谢: 感谢刘思岐、刘哲、温宁、孙秋实、刘畅等人在野外给予的帮助,另外感谢两位审稿专家和编辑部对文章修改提出诸多宝贵意见和建议.
    • Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038
      Gao, L. E., Zeng, L. S., Yan, L. L., et al., 2021. Enrichment Mechanisms of Sn-Cs-Tl in the Himalaya Leucogranite. Acta Petrologica Sinica, 37(10): 2923-2943(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.01
      Ghaderi, M., Palin, J. M., Campbell, I. H., et al., 1999. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94(3): 423-437. https://doi.org/10.2113/gsecongeo.94.3.423
      Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7): 851-860. https://doi.org/10.1016/j.pnsc.2008.01.016
      Hou, Z. Q., Chen, J., Zhai, M. G., 2020. Current Status and Frontiers of Research on Critical Mineral Resources. Chinese Science Bulletin, 65(33): 3651-3652(in Chinese). doi: 10.1360/TB-2020-1417
      Huang, Y., Fu, J. G., Li, G. M., et al., 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206(in Chinese with English abstract).
      Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super-Rich Integrated Ore? Earth Science, 47(10): 3869-3871(in Chinese with English abstract).
      Jiang, S. Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295-1298. https://doi.org/10.1007/s12583-023-2001-5
      Klemme, S., Günther, D., Hametner, K., et al., 2006. The Partitioning of Trace Elements between Ilmenite, Ulvospinel, Armalcolite and Silicate Melts with Implications for the Early Differentiation of the Moon. Chemical Geology, 234(3/4): 251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005
      Le Fort, P., Cuney, M., Deniel, C., et al., 1987. Crustal Generation of the Himalayan Leucogranites. Tectonophysics, 134(1/2/3): 39-57. https://doi.org/10.1016/0040-1951(87)90248-4
      Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4): 1003-1008(in Chinese with English abstract).
      Liu, C., Wang, R. C., Wu, F. Y., et al., 2020. Spodumene Pegmatites from the Pusila Pluton in the Higher Himalaya, South Tibet: Lithium Mineralization in a Highly Fractionated Leucogranite Batholith. Lithos, 358/359: 105421. https://doi.org/10.1016/j.lithos.2020.105421
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Z. C., 2013. Age and Genesis of Himalayan Ranba Pale Granite (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
      Lu, J. J., Zhang, R. Q., Huang, X. D., et al., 2022. Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt. South China Geology, 38(3): 359-381(in Chinese with English abstract).
      Pan, G. T., Ding, J., 2004. Geological Map and Description of Qinghai-Tibet Plateau and Adjacent Areas (1∶1 500 000). Chengdu Cartographic Publishing House, Chengdu (in Chinese).
      Qin, K. Z., Zhao, J. X., He, C. T., et al., 2021. Discovery of the Qiongjiagang Giant Lithium Pegmatite Deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02
      Rempel, K. U., Williams-Jones, A. E., Migdisov, A. A., 2009. The Partitioning of Molybdenum(VI) between Aqueous Liquid and Vapour at Temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381-3392. https://doi.org/10.1016/j.gca.2009.03.004
      Schmidt, C., Romer, R. L., Wohlgemuth-Ueberwasser, C. C., et al., 2020. Partitioning of Sn and W between Granitic Melt and Aqueous Fluid. Ore Geology Reviews, 117: 103263. https://doi.org/10.1016/j.oregeorev.2019.103263
      Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
      Song, G. X., Qin, K. Z., Li, G. M., et al., 2014. Scheelite Elemental and Isotopic Signatures: Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99(2/3): 303-317. https://doi.org/10.2138/am.2014.4431
      Su, Q. W., Mao, J. W., Song, S. W., et al., 2020. Trace Element Geochemistry of Scheelites from Yongping Cu-W Deposit in Jiangxi: Implications for Ore Genesis. Mineral Deposits, 39(4): 631-646(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, K. K., Chen, B., 2017. Trace Elements and Sr-Nd Isotopes of Scheelite: Implications for the W-Cu-Mo Polymetallic Mineralization of the Shimensi Deposit, South China. American Mineralogist, 102(5): 1114-1128. https://doi.org/10.2138/am-2017-5654
      Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China: Earth Science, 47(8): 871-880(in Chinese).
      Wang, S. S., 1983. Dating of the Chinese K-Ar Standard Sample (Fangshan Biotite, ZBH-25) by Using the 40Ar/39Ar Method. Scientia Geologica Sinica, 4: 315-321.
      Wu, F. Y., Liu, X. C., Liu, Z. C., et al., 2020. Highly Fractionated Himalayan Leucogranites and Associated Rare-Metal Mineralization. Lithos, 352/353: 105319. https://doi.org/10.1016/j.lithos.2019.105319
      Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36(in Chinese with English abstract).
      Wu, F. Y., Wang, R. C., Liu, X. C., et al., 2021. New Breakthroughs in the Studies of Himalayan Rare-Metal Mineralization. Acta Petrologica Sinica, 37(11): 3261-3276(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01
      Xiao, Y. Y., Chen, S., Niu, Y. L., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and Their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3): egaa038. https://doi.org/10.1093/petrology/egaa038
      Xie, L., Tao, X. Y., Wang, R. C., et al., 2020. Highly Fractionated Leucogranites in the Eastern Himalayan Cuonadong Dome and Related Magmatic Be-Nb-Ta and Hydrothermal Be-W-Sn Mineralization. Lithos, 354: 105286. https://doi.org/10.1016/j.lithos.2019.105286
      Xie, L., Wang, R. C., Tian, E. N., et al., 2021. Oligocene Nb-Ta-W-Mineralization Related to the Xiaru Leucogranite in the Himalayan Orogen. Chinese Science Bulletin, 66(35): 4574-4591(in Chinese). doi: 10.1360/TB-2021-0546
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, W., Jiang, S. Y., Ouyang, Y. P., et al., 2021. Geochronology and Textural and Compositional Complexity of Apatite from the Mineralization-Related Granites in the World-Class Zhuxi W-Cu Skarn Deposit: A Record of Magma Evolution and W Enrichment in the Magmatic System. Ore Geology Reviews, 128: 103885. https://doi.org/10.1016/j.oregeorev.2020.103885
      Zhao, K. D., Jiang, S. Y., 2022. How did the World-Famous South China Tungsten-Tin Metallogenic Province Come into Being? Earth Science, 47(10): 3882-3884(in Chinese).
      Zhao, Y. M., Lin, W. W., Bi, C. S., 1990. China Skarn Deposit. Geological Publishing House, Beijing (in Chinese).
      Zheng, Y. C., Hou, Z. Q., Fu, Q., et al., 2016. Mantle Inputs to Himalayan Anatexis: Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves. Lithos, 264: 125-140. https://doi.org/10.1016/j.lithos.2016.08.019
      Zhou, Q. F., Qin, K. Z., He, C. T., et al., 2021. Li-Be-Nb-Ta Mineralogy of the Kuqu Leucogranite and Pegmatite in the Eastern Himalaya, Tibet, and Its Implication. Acta Petrologica Sinica, 37(11): 3305-3324(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.05
      高利娥, 曾令森, 严立龙, 等, 2021. 喜马拉雅淡色花岗岩: 关键金属Sn-Cs-Tl的富集机制. 岩石学报, 37(10): 2923-2943.
      侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651-3652.
      黄勇, 付建刚, 李光明, 等, 2019. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现. 地球科学, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114
      蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的?. 地球科学, 47(10): 3869-3871. doi: 10.3799/dqkx.2022.844
      李光明, 张林奎, 焦彦杰, 等, 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008.
      刘志超, 2013. 喜马拉雅然巴淡色花岗岩时代与成因(博士学位论文). 北京: 中国科学院大学.
      陆建军, 章荣清, 黄旭栋, 等, 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359-381.
      潘桂棠, 丁俊, 2004. 青藏高原及邻区地质图及说明书(1∶1 500 000). 成都: 成都地图出版社.
      秦克章, 赵俊兴, 何畅通, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286.
      苏蔷薇, 毛景文, 宋世伟, 等, 2020. 江西永平Cu-W矿床白钨矿地球化学特征及其对矿床成因的指示. 矿床地质, 39(4): 631-646.
      王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学: 地球科学, 47(8): 871-880.
      吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
      吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破. 岩石学报, 37(11): 3261-3276.
      谢磊, 王汝成, 田恩农, 等, 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用. 科学通报, 66(35): 4574-4591.
      赵葵东, 蒋少涌, 2022. 世界著名的华南钨锡成矿省是如何形成的?. 地球科学, 47(10): 3882-3884. doi: 10.3799/dqkx.2022.849
      赵一鸣, 林文蔚, 毕承思, 等, 1990. 中国矽卡岩矿床. 北京: 地质出版社.
      周起凤, 秦克章, 何畅通, 等, 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324.
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050255075100125
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.2 %FULLTEXT: 23.2 %META: 62.9 %META: 62.9 %PDF: 13.9 %PDF: 13.9 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.4 %其他: 23.4 %China: 2.3 %China: 2.3 %上海: 0.4 %上海: 0.4 %乌鲁木齐: 0.8 %乌鲁木齐: 0.8 %兰州: 0.6 %兰州: 0.6 %凉山: 0.2 %凉山: 0.2 %北京: 7.4 %北京: 7.4 %南京: 1.2 %南京: 1.2 %南宁: 0.4 %南宁: 0.4 %南昌: 1.4 %南昌: 1.4 %南通: 0.4 %南通: 0.4 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %吉林: 0.6 %吉林: 0.6 %呼和浩特: 0.6 %呼和浩特: 0.6 %哈尔滨: 0.8 %哈尔滨: 0.8 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.2 %太原: 0.2 %孝感: 0.4 %孝感: 0.4 %宣城: 0.2 %宣城: 0.2 %常州: 0.4 %常州: 0.4 %广州: 0.2 %广州: 0.2 %廊坊: 1.4 %廊坊: 1.4 %张家口: 7.5 %张家口: 7.5 %成都: 1.4 %成都: 1.4 %扬州: 0.4 %扬州: 0.4 %拉斯维加斯: 1.0 %拉斯维加斯: 1.0 %拉萨: 0.2 %拉萨: 0.2 %日喀则: 0.6 %日喀则: 0.6 %昆明: 1.9 %昆明: 1.9 %杭州: 0.6 %杭州: 0.6 %柳州: 1.0 %柳州: 1.0 %桂林: 0.6 %桂林: 0.6 %武汉: 7.4 %武汉: 7.4 %汉中: 0.4 %汉中: 0.4 %淄博: 0.2 %淄博: 0.2 %温州: 0.2 %温州: 0.2 %漯河: 1.9 %漯河: 1.9 %石家庄: 1.4 %石家庄: 1.4 %福州: 0.6 %福州: 0.6 %聊城: 0.6 %聊城: 0.6 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %芝加哥: 0.6 %芝加哥: 0.6 %萍乡: 0.4 %萍乡: 0.4 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.6 %衡阳: 0.6 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 7.2 %西宁: 7.2 %西安: 1.2 %西安: 1.2 %诺沃克: 0.6 %诺沃克: 0.6 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.6 %达州: 0.6 %运城: 1.5 %运城: 1.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.8 %重庆: 0.8 %长春: 0.4 %长春: 0.4 %长沙: 0.8 %长沙: 0.8 %阿默斯福特: 0.4 %阿默斯福特: 0.4 %其他China上海乌鲁木齐兰州凉山北京南京南宁南昌南通台州合肥吉林呼和浩特哈尔滨哥伦布嘉兴天津太原孝感宣城常州广州廊坊张家口成都扬州拉斯维加斯拉萨日喀则昆明杭州柳州桂林武汉汉中淄博温州漯河石家庄福州聊城芒廷维尤芝加哥萍乡衡水衡阳衢州襄阳西宁西安诺沃克贵阳达州运城遵义邯郸郑州重庆长春长沙阿默斯福特

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(6)

      Article views (323) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return