Citation: | Ren Chunmeng, Zheng Yuanchuan, Li Xin, Gao Lei, Xu Peiyan, Wu Changda, Yang Zhusen, 2024. Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet. Earth Science, 49(10): 3610-3628. doi: 10.3799/dqkx.2023.139 |
Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038
|
Gao, L. E., Zeng, L. S., Yan, L. L., et al., 2021. Enrichment Mechanisms of Sn-Cs-Tl in the Himalaya Leucogranite. Acta Petrologica Sinica, 37(10): 2923-2943(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.01
|
Ghaderi, M., Palin, J. M., Campbell, I. H., et al., 1999. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94(3): 423-437. https://doi.org/10.2113/gsecongeo.94.3.423
|
Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7): 851-860. https://doi.org/10.1016/j.pnsc.2008.01.016
|
Hou, Z. Q., Chen, J., Zhai, M. G., 2020. Current Status and Frontiers of Research on Critical Mineral Resources. Chinese Science Bulletin, 65(33): 3651-3652(in Chinese). doi: 10.1360/TB-2020-1417
|
Huang, Y., Fu, J. G., Li, G. M., et al., 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206(in Chinese with English abstract).
|
Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super-Rich Integrated Ore? Earth Science, 47(10): 3869-3871(in Chinese with English abstract).
|
Jiang, S. Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295-1298. https://doi.org/10.1007/s12583-023-2001-5
|
Klemme, S., Günther, D., Hametner, K., et al., 2006. The Partitioning of Trace Elements between Ilmenite, Ulvospinel, Armalcolite and Silicate Melts with Implications for the Early Differentiation of the Moon. Chemical Geology, 234(3/4): 251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005
|
Le Fort, P., Cuney, M., Deniel, C., et al., 1987. Crustal Generation of the Himalayan Leucogranites. Tectonophysics, 134(1/2/3): 39-57. https://doi.org/10.1016/0040-1951(87)90248-4
|
Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4): 1003-1008(in Chinese with English abstract).
|
Liu, C., Wang, R. C., Wu, F. Y., et al., 2020. Spodumene Pegmatites from the Pusila Pluton in the Higher Himalaya, South Tibet: Lithium Mineralization in a Highly Fractionated Leucogranite Batholith. Lithos, 358/359: 105421. https://doi.org/10.1016/j.lithos.2020.105421
|
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, Z. C., 2013. Age and Genesis of Himalayan Ranba Pale Granite (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
|
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
|
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
|
Lu, J. J., Zhang, R. Q., Huang, X. D., et al., 2022. Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt. South China Geology, 38(3): 359-381(in Chinese with English abstract).
|
Pan, G. T., Ding, J., 2004. Geological Map and Description of Qinghai-Tibet Plateau and Adjacent Areas (1∶1 500 000). Chengdu Cartographic Publishing House, Chengdu (in Chinese).
|
Qin, K. Z., Zhao, J. X., He, C. T., et al., 2021. Discovery of the Qiongjiagang Giant Lithium Pegmatite Deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02
|
Rempel, K. U., Williams-Jones, A. E., Migdisov, A. A., 2009. The Partitioning of Molybdenum(VI) between Aqueous Liquid and Vapour at Temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381-3392. https://doi.org/10.1016/j.gca.2009.03.004
|
Schmidt, C., Romer, R. L., Wohlgemuth-Ueberwasser, C. C., et al., 2020. Partitioning of Sn and W between Granitic Melt and Aqueous Fluid. Ore Geology Reviews, 117: 103263. https://doi.org/10.1016/j.oregeorev.2019.103263
|
Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
|
Song, G. X., Qin, K. Z., Li, G. M., et al., 2014. Scheelite Elemental and Isotopic Signatures: Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99(2/3): 303-317. https://doi.org/10.2138/am.2014.4431
|
Su, Q. W., Mao, J. W., Song, S. W., et al., 2020. Trace Element Geochemistry of Scheelites from Yongping Cu-W Deposit in Jiangxi: Implications for Ore Genesis. Mineral Deposits, 39(4): 631-646(in Chinese with English abstract).
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Sun, K. K., Chen, B., 2017. Trace Elements and Sr-Nd Isotopes of Scheelite: Implications for the W-Cu-Mo Polymetallic Mineralization of the Shimensi Deposit, South China. American Mineralogist, 102(5): 1114-1128. https://doi.org/10.2138/am-2017-5654
|
Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China: Earth Science, 47(8): 871-880(in Chinese).
|
Wang, S. S., 1983. Dating of the Chinese K-Ar Standard Sample (Fangshan Biotite, ZBH-25) by Using the 40Ar/39Ar Method. Scientia Geologica Sinica, 4: 315-321.
|
Wu, F. Y., Liu, X. C., Liu, Z. C., et al., 2020. Highly Fractionated Himalayan Leucogranites and Associated Rare-Metal Mineralization. Lithos, 352/353: 105319. https://doi.org/10.1016/j.lithos.2019.105319
|
Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36(in Chinese with English abstract).
|
Wu, F. Y., Wang, R. C., Liu, X. C., et al., 2021. New Breakthroughs in the Studies of Himalayan Rare-Metal Mineralization. Acta Petrologica Sinica, 37(11): 3261-3276(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01
|
Xiao, Y. Y., Chen, S., Niu, Y. L., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and Their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3): egaa038. https://doi.org/10.1093/petrology/egaa038
|
Xie, L., Tao, X. Y., Wang, R. C., et al., 2020. Highly Fractionated Leucogranites in the Eastern Himalayan Cuonadong Dome and Related Magmatic Be-Nb-Ta and Hydrothermal Be-W-Sn Mineralization. Lithos, 354: 105286. https://doi.org/10.1016/j.lithos.2019.105286
|
Xie, L., Wang, R. C., Tian, E. N., et al., 2021. Oligocene Nb-Ta-W-Mineralization Related to the Xiaru Leucogranite in the Himalayan Orogen. Chinese Science Bulletin, 66(35): 4574-4591(in Chinese). doi: 10.1360/TB-2021-0546
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Zhang, W., Jiang, S. Y., Ouyang, Y. P., et al., 2021. Geochronology and Textural and Compositional Complexity of Apatite from the Mineralization-Related Granites in the World-Class Zhuxi W-Cu Skarn Deposit: A Record of Magma Evolution and W Enrichment in the Magmatic System. Ore Geology Reviews, 128: 103885. https://doi.org/10.1016/j.oregeorev.2020.103885
|
Zhao, K. D., Jiang, S. Y., 2022. How did the World-Famous South China Tungsten-Tin Metallogenic Province Come into Being? Earth Science, 47(10): 3882-3884(in Chinese).
|
Zhao, Y. M., Lin, W. W., Bi, C. S., 1990. China Skarn Deposit. Geological Publishing House, Beijing (in Chinese).
|
Zheng, Y. C., Hou, Z. Q., Fu, Q., et al., 2016. Mantle Inputs to Himalayan Anatexis: Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves. Lithos, 264: 125-140. https://doi.org/10.1016/j.lithos.2016.08.019
|
Zhou, Q. F., Qin, K. Z., He, C. T., et al., 2021. Li-Be-Nb-Ta Mineralogy of the Kuqu Leucogranite and Pegmatite in the Eastern Himalaya, Tibet, and Its Implication. Acta Petrologica Sinica, 37(11): 3305-3324(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.05
|
高利娥, 曾令森, 严立龙, 等, 2021. 喜马拉雅淡色花岗岩: 关键金属Sn-Cs-Tl的富集机制. 岩石学报, 37(10): 2923-2943.
|
侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651-3652.
|
黄勇, 付建刚, 李光明, 等, 2019. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现. 地球科学, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114
|
蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的?. 地球科学, 47(10): 3869-3871. doi: 10.3799/dqkx.2022.844
|
李光明, 张林奎, 焦彦杰, 等, 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008.
|
刘志超, 2013. 喜马拉雅然巴淡色花岗岩时代与成因(博士学位论文). 北京: 中国科学院大学.
|
陆建军, 章荣清, 黄旭栋, 等, 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359-381.
|
潘桂棠, 丁俊, 2004. 青藏高原及邻区地质图及说明书(1∶1 500 000). 成都: 成都地图出版社.
|
秦克章, 赵俊兴, 何畅通, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286.
|
苏蔷薇, 毛景文, 宋世伟, 等, 2020. 江西永平Cu-W矿床白钨矿地球化学特征及其对矿床成因的指示. 矿床地质, 39(4): 631-646.
|
王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学: 地球科学, 47(8): 871-880.
|
吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
|
吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破. 岩石学报, 37(11): 3261-3276.
|
谢磊, 王汝成, 田恩农, 等, 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用. 科学通报, 66(35): 4574-4591.
|
赵葵东, 蒋少涌, 2022. 世界著名的华南钨锡成矿省是如何形成的?. 地球科学, 47(10): 3882-3884. doi: 10.3799/dqkx.2022.849
|
赵一鸣, 林文蔚, 毕承思, 等, 1990. 中国矽卡岩矿床. 北京: 地质出版社.
|
周起凤, 秦克章, 何畅通, 等, 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324.
|