• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 10
    Oct.  2024
    Turn off MathJax
    Article Contents
    Yi Wei, Yu Bin, Hu Xiewen, Hu Jianchun, Liu Fengyan, Wang Yan, 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
    Citation: Yi Wei, Yu Bin, Hu Xiewen, Hu Jianchun, Liu Fengyan, Wang Yan, 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145

    On Early Warning of First Debris Flow after a Wildfire

    doi: 10.3799/dqkx.2023.145
    • Received Date: 2022-12-30
      Available Online: 2024-11-08
    • Publish Date: 2024-10-25
    • Postfire debris flows are hazards that can easily occur and are highly destructive, making them an important target for hazard prevention and mitigation in mountainous areas. Postfire debris flow prediction models developed by researchers outside China offer good prediction results only for regions corresponding to the databases used but poor prediction results for other regions. A forest fire can significantly increase the water repellency of the soil under the forest, and when rainfall occurs, flash floods with high flows form very easily and trigger debris flows. In the first rainy season after a wildfire, the rainfall threshold for debris flow occurrence is very low and the probability of debris flow occurrence is very high. Using wildfires in Liangshan Prefecture, Sichuan Province, China, a concept of equivalent antecedent rainfall (EAR) was introduced, and an EAR calculation model was established through artificial rainfall experiments. An early warning model for the first postfire gully-type debris flow was established using the general quation. The reliability of the method was verified using initial postfire debris flow events in Sichuan, China, and in the United States. The early warning model for first postfire debris flow in this study is a new method for hazard mitigation and the prevention of postfire debris flows.

       

    • loading
    • Cannon, S. H., 2000. Debris-Flow Response of Southern California Catchments Burned by Wildfire. In Proceedings of Second International Conference on Debris-Flow Hazards Mitigation. Brookfield, VT, 45-52.
      Cannon, S. H., 2001. Debris-Flow Generation from Recently Burned Watersheds. Environmental and Engineering Geoscience, 7(4): 321-341. https://doi.org/10.2113/gseegeosci.7.4.321
      Cannon, S. H., Gartner, J. E., 2007. Wildfire-Related Debris Flow from a Hazards Perspective. In: Jakob, M., Hungr, O., eds., Debris-flow Hazards and Related Phenomena. Springer, Berlin, Heidelberg: 363-385. https://doi.org/10.1007/3-540-27129-5_15
      Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
      Cerdà, A., 1998. Changes in Overland Flow and Infiltration after a Rangeland Fire in a Mediterranean Scrubland. Hydrological Processes, 12(7): 1031-1042. https://doi.org/10.1002/(sici)1099-1085(19980615)12: 71031: aid-hyp636>3.3.co;2-m doi: 10.1002/(sici)1099-1085(19980615)12:71031:aid-hyp636>3.3.co;2-m
      Dekker, L. W., Ritsema, C. J., 1994. How Water Moves in a Water Repellent Sandy Soil. 1. Potential and Actual Water Repellency. Water Resources Research, 30(9): 2507-2517. https://doi.org/10.1029/94WR00749
      Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., et al., 2003. Soil Water Repellency as a Potential Parameter in Rainfall-Runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrological Processes, 17(2): 363-377. https://doi.org/10.1002/hyp.1129
      Doerr, S. H., Shakesby, R. A., MacDonald, L. H., 2009. Soil Water Repellency: A Key Factor in Post-Fire Erosion? In: Cerda', A., Robichaud, P. R., eds., Restoration Strategies after Forest Fire. Science Publishers, Enfield, 197-223.
      Fan, G. S., Xing, R. X., Zhang, M. B., 2012. Experimental Study on Permeability of the Sandy Gravel Media with Different Gradation. Journal of Taiyuan University of Technology, 43(3): 373-378(in Chinese with English abstract). doi: 10.3969/j.issn.1007-9432.2012.03.028
      Gonzales, D. A., Stahr, D. W., Kirkham, R. M., 2002. Geologic Map of the Hermosa Quadrangle, La Plata County, Colorado. Colorado Geological Survey Open-File Report 02-1.
      Gabet, E. J., 2003. Post-Fire Thin Debris Flows: Sediment Transport and Numerical Modelling. Earth Surface Processes and Landforms, 28(12): 1341-1348. https://doi.org/10.1002/esp.590
      Gartner, J. E., Santi, P. M., Cannon, S. H., 2015. Predicting Locations of Post-Fire Debris-Flow Erosion in the San Gabriel Mountains of Southern California. Natural Hazards, 77(2): 1305-1321. https://doi.org/10.1007/s11069-015-1656-3
      Gartner, J. E., Cannon, S. H., Santi, P. M., 2014. Empirical Models for Predicting Volumes of Sediment Deposited by Debris Flows and Sediment-Laden Floods in the Transverse Ranges of Southern California. Engineering Geology, 176: 45-56. https://doi.org/10.1016/j.enggeo.2014.04.008
      Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346-007-0112-1
      Hu, X. W., Jin, T., Yin, W. Q., et al., 2020. The Characteristics of Forest Fire Burned Area and Susceptibility Assessment of Post-Fire Debris Flow in Jingjiu Township, Xichang City. Journal of Engineering Geology, 28(4): 762-771(in Chinese with English abstract).
      Hu, X. W., Wang, Y., Yang, Y., 2018. Research Actuality and Evolution Mechanism of Post-Fire Debris Flow. Journal of Engineering Geology, 26(6): 1562-1573(in Chinese with English abstract).
      Kean, J. W., Staley, D. W., Cannon, S. H., 2011. In Situ Measurements of Post-Fire Debris Flows in Southern California: Comparisons of the Timing and Magnitude of 24 Debris-Flow Events with Rainfall and Soil Moisture Conditions. Journal of Geophysical Research Earth Surface, 116(4): F4019. https://doi.org/10.1029/2011JF002005
      Key, C. H., Benson, N. C., 2006. Landscape Assessment (LA) Sampling and Analysis Methods. In: Lutes, D. C., Keane, R. E., Caratti, J. F., eds., FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Co., 1-55.
      Lavee, H., Kutiel, P., Segev, M., et al., 1995. Effect of Surface Roughness on Runoff and Erosion in a Mediterranean Ecosystem: The Role of Fire. Geomorphology, 11(3): 227-234. https://doi.org/10.1016/0169-555X(94)00059-Z
      Lemmnitz, C., Kuhnert, M., Bens, O., et al., 2008. Spatial and Temporal Variations of Actual Soil Water Repellency and Their Influence on Surface Runoff. Hydrological Processes, 22(12): 1976-1984. https://doi.org/10.1002/hyp.6782
      Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682(in Chinese with English abstract).
      Mataix-Solera, J., Cerdà, A., Arcenegui, V., et al., 2011. Fire Effects on Soil Aggregation: A Review. Earth-Science Reviews, 109(1/2): 44-60. https://doi.org/10.1016/j.earscirev.2011.08.002
      Meyer, G. A., Wells, S. G., 1997. Fire-Related Sedimentation Events on Alluvial Fans, Yellowstone National Park, U. S. A.. SEPM Journal of Sedimentary Research, 67: 776-791. https://doi.org/10.1306/d426863a-2b26-11d7-8648000102c1865d
      McPhee, J. A., 1989. The Control of Nature. Farrar, Straus and Giroux, New York.
      Min, L. L., Yu, J. J., 2010. Progress in the Research of Soil Water Repellency and Its Influences on Overland Flow Generation. Progress in Geography, 29(7): 855-860(in Chinese with English abstract).
      Mitchell, P. B., Humphreys, G. S., 1987. Litter Dams and Microterraces Formed on Hillslopes Subject to Rainwash in the Sydney Basin, Australia. Geoderma, 39(4): 331-357. https://doi.org/10.1016/0016-7061(87)90052-8
      Nyman, P., Sheridan, G. J., Smith, H. G., et al., 2011. Evidence of Debris Flow Occurrence after Wildfire in Upland Catchments of South-East Australia. Geomorphology, 125(3): 383-401. https://doi.org/10.1016/j.geomorph.2010.10.016
      Nyman, P., Smith, H., Sherwin, C., et al., 2015. Predicting Sediment Delivery from Debris Flows after Wildfire. Geomorphology, 250: 173-186. https://doi.org/10.1016/j.geomorph.2015.08.023
      Parise, M., Cannon, S. H., 2012. Wildfire Impacts on the Processes That Generate Debris Flows in Burned Watersheds. Natural Hazards, 61(1): 217-227. https://doi.org/10.1007/s11069-011-9769-9
      Shi, Z. M., Wu, B., Zheng, H. C., et al., 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349(in Chinese with English abstract).
      Staley, D. M., Kean, J. W., Cannon, S. H., et al., 2013. Objective Definition of Rainfall Intensity-Duration Thresholds for the Initiation of Post-Fire Debris Flows in Southern California. Landslides, 10(5): 547-562. https://doi.org/10.1007/s10346-012-0341-9
      Tessler, N., Wittenberg, L., Malkinson, D., et al., 2008. Fire Effects and Short-Term Changes in Soil Water Repellency-Mt. Carmel, Israel. CATENA, 74(3): 185-191. https://doi.org/10.1016/j.catena.2008.03.002
      Tie, Y. B., Xu, R. G., Liu, H., et al., 2020. Study on the Characteristics and Formation Mechanism of the Typical Post-Fire Debris Flow in Lushan Area of Xichang City: A Case Study of 3# Branch on the Left Bank of Xiangshuigou. Geological Survey of China, 7(3): 82-88(in Chinese with English abstract).
      Wang, Y., Hu, X. W., Jin, T., et al., 2019. Material Initiation of Debris Flow Generation Processes after Hillside Fires. Journal of Engineering Geology, 27(6): 1415-1423(in Chinese with English abstract).
      Yin, C. J., Long, Y. Q., 2021. Study on the Rainwater Infiltration Law of Unsaturated Silt under Heavy Rain. Journal of Railway Science and Engineering, 18(1): 81-86(in Chinese with English abstract).
      Yu, B., Zhu, Y., Wang, T., et al., 2014. Prediction Model for Occurrence of Debris Flows in Channels with Runoff Initiation Mechanism. Journal of Engineering Geology, 22(3): 450-455(in Chinese with English abstract).
      Yu, B., Zhu, Y., Wang, T., et al., 2015. Research on the 10-Minute Rainfall Prediction Model for Debris Flows. Advances in Water Science, 26(3): 347-355(in Chinese with English abstract).
      樊贵盛, 邢日县, 张明斌, 2012. 不同级配砂砾石介质渗透系数的试验研究. 太原理工大学学报, 43(3): 373-378. doi: 10.3969/j.issn.1007-9432.2012.03.028
      胡卸文, 金涛, 殷万清, 等, 2020. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价. 工程地质学报, 28(4): 762-771.
      胡卸文, 王严, 杨瀛, 2018. 火后泥石流成灾特点及研究现状. 工程地质学报, 26(6): 1562-1573.
      刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
      闵雷雷, 于静洁, 2010. 土壤斥水性及其对坡面产流的影响研究进展. 地理科学进展, 29(7): 855-860.
      石振明, 吴彬, 郑鸿超, 等, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
      铁永波, 徐如阁, 刘洪, 等, 2020. 西昌市泸山地区典型火后泥石流特征与成因机制研究: 以响水沟左岸3#支沟为例. 中国地质调查, 7(3): 82-88.
      王严, 胡卸文, 金涛, 等, 2019. 火后泥石流形成过程的物源启动模式研究. 工程地质学报, 27(6): 1415-1423.
      印长俊, 龙勇齐, 2021. 强降雨条件下非饱和粉土雨水渗透规律研究. 铁道科学与工程学报, 18(1): 81-86.
      余斌, 朱渊, 王涛, 等, 2014. 沟床起动型泥石流预报研究. 工程地质学报, 22(3): 450-455.
      余斌, 朱渊, 王涛, 等, 2015. 沟床起动型泥石流的10 min降雨预报模型. 水科学进展, 26(3): 347-355.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(4)

      Article views (318) PDF downloads(37) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return