• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Zhou Baofeng, Song Quan, Ren Yefei, Wen Ruizhi, Chen Xiangzhao, 2024. The Study on the Influence and Application of Foundation Pier Height on Strong Motion Records. Earth Science, 49(2): 414-424. doi: 10.3799/dqkx.2023.149
    Citation: Zhou Baofeng, Song Quan, Ren Yefei, Wen Ruizhi, Chen Xiangzhao, 2024. The Study on the Influence and Application of Foundation Pier Height on Strong Motion Records. Earth Science, 49(2): 414-424. doi: 10.3799/dqkx.2023.149

    The Study on the Influence and Application of Foundation Pier Height on Strong Motion Records

    doi: 10.3799/dqkx.2023.149
    • Received Date: 2023-02-22
    • Publish Date: 2024-02-25
    • The accelerometer for strong motion observation is usually fixed on the concrete pier at a certain height, and the ground motion of ideal free field cannot be reflected completely. In order to study the influence of pier height on the strong motion records, three piers with different heights and the same cross-sectional dimension are designed, and the effect of the pier height on the time-frequency characteristics of the strong motion records is analyzed through seismic simulation shaking table tests, bedrock records are selected as the ground motion input, and numerical simulations are applied to verify the research results, at the same time, the strong motion records of station 51SMM in Luding earthquake is modified to standard pier by filtering. It shows that the effect of the piers on the horizontal PGA, PGV and PGD increases with the increasing height, while the PGA and PGV amplitudes decrease for the vertical ground motion. Fourier amplitude spectrum in the range of 0.5-7 Hz shows that 0.6 m and 1.2 m high piers have less influence than other frequency bands, while 2.0 m high piers have the greatest influence. The experiments above show the filtering effect is better for modifying the pier with different heights, and it is better used in strong motion records of station coded by 51SMM.The piers with the height exceeding 1.2m should be avoided for strong motion observations.

       

    • loading
    • China Earthquake Administration, 2005. Technical Specification of China Digital Strong Motion Network. Seismological Press, Beijing(in Chinese).
      China Earthquake Administration, 2018. Specification for the Construction of Seismic Station-Strong Motion Station. Seismological Press, Beijing (in Chinese).
      Consortium of Organizations for Strong-Motion Observation Systems, 2001. Guidelines for Installation of Advanced National Seismic System Strong-Motion Reference Stations. California, USA.
      Crouse, C. B., Hushmand, B., 1989. Soil-Structure Interaction at CDMG and USGS Accelerograph Stations. Bulletin of the Seismological Society of America, 79(1): 1-14. https://doi.org/10.1785/bssa0790010001
      Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864(in Chinese with English abstract).
      Huo, J. R., 1989. Study on the Attenuation Laws of Strong Eqrthquake Ground Motion near the Source(Dissertation). Institute Of Engineering Mechanics State Seismological Bureau, Harbin(in Chinese with English abstract).
      Lei, J. C., Gao, M. T., Yan, X., et al., 2007. Seismic Motion Attenuation Relations in Sichuan and Adjacent Areas. Seismologica Sinica, 29(5): 500-511(in Chinese with English abstract).
      Li, P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M 6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164(in Chinese with English abstract).
      Stewart, J. P., 2000. Variations between Foundation-Level and Free-Field Earthquake Ground Motions. Earthquake Spectra, 16(2): 511-532. https://doi.org/10.1193/1.1586124
      Tajima, H., 1984. Predicted and Measured Motional Characteristics of a Large-Scale Shaking Table Foundation. The Eighth World Conference on Earthquake Engineering. San Francisco, California, U.S.A.
      Wen, K. L., Peng, H. Y., Tsai, Y. B., et al., 2001. Why 1G was Recorded at TCU129 Site during the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5): 1255-1266. https://doi.org/10.1785/0120000707
      Xie, L. L., 1982. Strong Motion Observation and Analysis Principle. Seismological Press, Beijing (in Chinese).
      Yao, X. X., Ren, Y. F., Kishida, T., et al., 2022. The Procedure of Filtering the Strong Motion Record: Denoisng and Filtering. Engineering Mechanics, 39(S1): 320-329(in Chinese with English abstract).
      Yu, Y. X., Li, S. Y., Xiao, L., 2013. Development of Ground Motion Attenuation Relations for the New Seismic Hazard Map of China. Technology For Earthquake Disaster Prevention, 8(01): 24-33(in Chinese with English abstract).
      Yu, Y. X., Wang, S. Y., 2006. Attenuation Relations for Horizontal Peak Ground Acceleration and Response Spectrum in Eastern and Western China. Technology For Earthquake Disaster Prevention, 3(5): 206-217(in Chinese with English abstract).
      Zhao, H. J., Ma, F. S., Li, Z. Q., et al., 2022. Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area. Earth Science, 47(12): 4401-4416 (in Chinese with English abstract).
      Zhou, B. F., Wen, R. Z., Xie, L. L., 2014. The Preliminary Study on the "Spike" in Strong Motion Records. Journal of Civil Engineering, 47(S2): 1-5 (in Chinese with English abstract).
      Zhou, Y. N., 2011. Strong Motion Observation Technology. Seismological Press, Beijing (in Chinese).
      中国地震局, 2005. 中国数字强震动台网技术规程. 北京: 地震出版社.
      中国地震局, 2018. 地震台站建设规范强震动台站(DB/T 17-2018). 北京: 地震出版社.
      霍俊荣, 1989. 近场强地面运动衰减规律的研究(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
      雷建成, 高孟潭, 俞言祥, 2007. 四川及邻区地震动衰减关系. 地震学报, 29(5): 500-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200705008.htm
      李平恩, 廖力, 奉建州, 2022.2019年6月17日四川长宁6.0级地震震后应力演化与余震关系. 地球科学, 47(6): 2149-2164. doi: 10.3799/dqkx.2021.143
      谢礼立, 1982. 强震观测与分析原理. 北京: 地震出版社.
      俞言祥, 汪素云, 2006. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 3(5): 206-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200603005.htm
      俞言祥, 李山有, 肖亮, 2013. 为新区划图编制所建立的地震动衰减关系. 震灾防御技术, 8(1): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201301004.htm
      姚鑫鑫, 任叶飞, 岸田忠大, 等, 2022. 强震动记录的数据处理流程: 去噪滤波. 工程力学, 39(S1): 320-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2022S1040.htm
      周雍年, 2011. 强震动观测技术. 北京: 地震出版社.
      周宝峰, 温瑞智, 谢礼立, 2014. 强震记录中的"尖刺"现象初步研究. 土木工程学报, 47(S2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S2047.htm
      赵海军, 马凤山, 李志清, 等, 2022. 基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例. 地球科学, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(4)

      Article views (545) PDF downloads(42) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return