Citation: | Chen Lixin, Jia Chengzao, Wu Guanghui, Huang Shaoying, Yang Shuai, Chen Yongquan, Su Zhou, 2024. Basement Architecture and Evolution of Neoproterozoic Tarim Rift Basin. Earth Science, 49(10): 3445-3458. doi: 10.3799/dqkx.2023.150 |
Bhat, G. M., Craig, J., Hafiz, M., et al., 2012. Geology and Hydrocarbon Potential of Neoproterozoic-Cambrian Basins in Asia: An Introduction. Geological Society, London, Special Publications, 366(1): 1-17. https://doi.org/10.1144/SP366.15
|
Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
|
Chen, H. J., Chen, Y. J., Ripley, E. M., et al., 2017. Isotope and Trace Element Studies of the Xingdi Ⅱ Mafic-Ultramafic Complex in the Northern Rim of the Tarim Craton: Evidence for Emplacement in a Neoproterozoic Subduction Zone. Lithos, 278/279/280/281: 274-284. https://doi.org/10.1016/j.lithos.2017.01.014
|
Collins, A. S., Pisarevsky, S. A., 2005. Amalgamating Eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth Science Reviews, 71(3): 229-270. https://doi.org/10.1016/j.earscirev.2005.02.004
|
Craig, J., Thurow, J., Thusu, B., et al., 2009. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326(1): 1-25. https://doi.org/10.1144/sp326.1
|
Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006
|
Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Neoproterozoic to Paleozoic Long-Lived Accretionary Orogeny in the Northern Tarim Craton. Tectonics, 33(3): 302-329. https://doi.org/10.1002/2013TC003501
|
Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
|
He, J. W., Zhu, W. B., Ge, R. F., et al., 2014. Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton: Implications for Supercontinent Reconstruction and Crustal Evolution. Precambrian Research, 254: 194-209. https://doi.org/10.1016/j.precamres.2014.08.016
|
He, J. Y., Xu, B., Li, D., 2019. Newly Discovered Early Neoproterozoic (ca. 900 Ma) Andesitic Rocks in the Northwestern Tarim Craton: Implications for the Reconstruction of the Rodinia Supercontinent. Precambrian Research, 325: 55-68. doi: 10.1016/j.precamres.2019.02.018
|
He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2012. Neoproterozoic Granulites from the Northeastern Margin of the Tarim Craton: Petrology, Zircon U-Pb Ages and Implications for the Rodinia Assembly. Precambrian Research, 212/213: 21-33. https://doi.org/10.1016/j.precamres.2012.04.014
|
Huang, Z. Y., Long, X. P., Wang, X. C., et al., 2017. Precambrian Evolution of the Chinese Central Tianshan Block: Constraints on Its Tectonic Affinity to the Tarim Craton and Responses to Supercontinental Cycles. Precambrian Research, 295: 24-37. https://doi.org/10.1016/j.precamres.2017.04.014
|
Jia, C. Z., 1997. Structural Characteristics and Oil and Gas in Tarim Basin, China. Petroleum Industry Press, Beijing(in Chinese with English abstract).
|
Li, S. T., Ren, J. Y., Xing, F. C., et al., 2012. Dynamic Processes of the Paleozoic Tarim Basin and Its Significance for Hydrocarbon Accumulation—A Review and Discussion. Journal of Earth Science, 23(4): 381-394. https://doi.org/10.1007/s12583-012-0262-5
|
Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011
|
Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831(in Chinese with English abstract).
|
Li, Y. J., Song, W. J., Wu, G. Y., et al., 2005. The Concealed Jinning Granodiorite and Diorite in the Central Tarim Basin. Science in China(Ser. D), 35(2): 97-104(in Chinese).
|
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
|
Luo, J. H., Zhou, D. W., Liu, Y. Q., et al., 2007. Age Determination and Its Geological Significance of the Epimetamorphic Rocks on the Southwestern Margin of the Tarim Basin. Journal of Stratigraphy, 31(4): 391-394(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2007.04.011
|
Ma, B. S., Tian, W. Z., Wu, G. H., et al., 2022. The Subduction-Related Great Unconformity in the Tarim Intracraton, NW China. Global and Planetary Change, 215: 103883. https://doi.org/10.1016/j.gloplacha.2022.103883
|
Merdith, A. S., Williams, S. E., Brune, S., et al., 2019. Rift and Plate Boundary Evolution across Two Supercontinent Cycles. Global and Planetary Change, 173: 1-14. https://doi.org/10.1016/j.gloplacha.2018.11.006
|
Merle, O., 2011. A Simple Continental Rift Classification. Tectonophysics, 513(1): 88-95. https://doi.org/10.1016/j.tecto.2011.10.004
|
Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4-29. https://doi.org/10.1016/j.gr.2012.12.026
|
Wang, C., Liu, L., Wang, Y. H., et al., 2015. Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 257: 65-82. https://doi.org/10.1016/j.precamres.2014.11.022
|
Wang, C., Wang, C., Liu, L., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193-208. https://doi.org/10.1016/j.precamres.2013.02.003
|
Wu, G. H., 2016. The Structural Characteristics of Carbonate Recks and Their Effects on Hydrocarbon Exploration in Craton Basin. Science Press, Beijing(in Chinese).
|
Wu, G. H., Li, H. W., Xu, Y. L., et al., 2012. The Tectonothermal Events, Architecture and Evolution of Tarim Craton Basement Palaeo-Uplifts. Acta Petrologica Sinica, 28(8): 2435-2452(in Chinese with English abstract).
|
Wu, G. H., Xiao, Y., He, J. Y., et al., 2019. Geochronology and Geochemistry of the Late Neoproterozoic A-Type Granitic Clasts in the Southwestern Tarim Craton: Petrogenesis and Tectonic Implications. International Geology Review, 61(3): 280-295. https://doi.org/10.1080/00206814.2017.1423521
|
Wu, G. H., Xiao, Y., Liu, W., et al., 2018. Ca. 850 Ma Magmatic Event in the Tarim Craton: Age, Geochemistry and Its Implications for the Assemblage of the Rodinia Supercontinent. Precambrian Research, 305, 489-503. doi: 10.1016/j.precamres.2017.10.020
|
Wu, G. H., Yang, S., Liu, W., et al., 2021. Switching from Advancing to Retreating Subduction in the Neoproterozoic Tarim Craton, NW China: Implications for Rodinia Breakup. Geoscience Frontiers, 12(1): 161-171. https://doi.org/10.1016/j.gsf.2020.03.013
|
Wu, G. H., Yang, S., Meert, J., et al., 2020. Two Phases of Paleoproterozoic Orogenesis in the Tarim Craton: Implications for Columbia Assembly. Gondwana Research, 83: 201-216. https://doi.org/10.1016/j.gr.2020.02.009
|
Wu, G. H., Zhang, B. S., Su, W., et al., 2009. Detrital Zircon U-Pb Ages and Its Significance of Silurian from Tazhong Area in Tarim Basin. Chinese Journal of Geology, 44(3): 1025-1035(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2009.03.019
|
Wu, H. X., Zhang, F. Q., Dilek, Y., et al., 2022. Mid-Neoproterozoic Collision of the Tarim Craton with the Yili-Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: A New Model. Earth Science Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989
|
Xiao, Y., Wu, G. H., Vandyk, T. M., et al., 2019. Geochronological and Geochemical Constraints on Late Cryogenian to Early Ediacaran Magmatic Rocks on the Northern Tarim Craton: Implications for Tectonic Setting and Affinity with Gondwana. International Geology Review, 61(17): 2100-2117. https://doi.org/10.1080/00206814.2019.1581847
|
Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
|
Xu, Z. Q., He, B. Z., Zhang, C. L., et al., 2013a. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001
|
Xu, B., Zou, H. B., Chen, Y., et al., 2013b. The Sugetbrak Basalts from Northwestern Tarim Block of Northwest China: Geochronology, Geochemistry and Implications for Rodinia Breakup and Ice Age in the Late Neoproterozoic. Precambrian Research, 236: 214-226. https://doi.org/10.1016/j.precamres.2013.07.009
|
Yang, H. J., Wu, G. H., Kusky, T. M., et al., 2018. Paleoproterozoic Assembly of the North and South Tarim Terranes: New Insights from Deep Seismic Profiles and Precambrian Granite Cores. Precambrian Research, 305: 151-165. https://doi.org/10.1016/j.precamres.2017.11.015
|
Ye, X. T., Zhang, C. L., 2020. Advances in Meso- to Neoproterozoic Stratigraphy of the Southwestern Tarim. Geological Survey and Research, 43(2): 161-168(in Chinese with English abstract).
|
Young, G. M., 2013. Precambrian Supercontinents, Glaciations, Atmospheric Oxygenation, Metazoan Evolution and an Impact That may have Changed the Second Half of Earth History. Geoscience Frontiers, 4(3): 247-261. doi: 10.1016/j.gsf.2012.07.003
|
Zhang, C. L., Li, H. K., Wang, H. Y., 2012. A Review on Precambrian Tectonic Evolution of Tarim Block; Possibility of Interaction between Neoproterozoic Plate Subduction and Mantle Plume. Geological Review, 58(5): 923-936(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.05.014
|
Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003
|
Zhang, C. L., Ye, X. T., Zou, H. B., et al., 2016. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31-45. https://doi.org/10.1016/j.precamres.2016.04.011
|
Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009
|
Zhang, J., Zhang, C. L., Li, H. K., et al., 2014. Revisit to Time and Tectonic Environment of the Aksu Blueschist Terrane in Northern Tarim, NW China: New Evidence from Zircon U-Pb Age and Hf Isotope. Acta Petrologica Sinica, 30(11): 3357-3365(in Chinese with English abstract).
|
Zhang, J. X., Li, H. K., Meng, F. C., et al., 2011. Polyphase Tectonothermal Events Recorded in "Metamorphic Basement" from the Altyn Tagh, the Southeastern Margin of the Tarim Basin, Western China: Constraint from U-Pb Zircon Geochronology. Acta Petrologica Sinica, 27(1): 23-46(in Chinese with English abstract).
|
Zhang, N., Dang, Z., Huang, C., et al., 2018. The Dominant Driving Force for Supercontinent Breakup: Plume Push or Subduction Retreat? Geoscience Frontiers, 9(4): 997-1007. https://doi.org/10.1016/j.gsf.2018.01.010
|
Zhang, Y. G., Yao, X. Z., Wang, J., et al., 2022. U-Pb Ages and Europium Anomalies of Detrital Zircons from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1671-8
|
Zhou, X. J., Tian, W. Z., Wu, G. H., et al., 2022. Geochemistry and U-Pb-Hf Zircon Systematics of Cryogenian Syn-Rift Magmatic Rocks from the Subsurface of the Tarim Craton: Implications for Subduction-Related Continental Rifting. Precambrian Research. https://10.1016/j.precamres.2022.106733 doi: 10.1016/j.precamres.2022.106733
|
Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Neoproterozoic Tectonic Evolution of the Precambrian Aksu Blueschist Terrane, Northwestern Tarim, China: Insights from LA-ICP-MS Zircon U-Pb Ages and Geochemical Data. Precambrian Research, 185(3/4): 215-230. https://doi.org/10.1016/j.precamres.2011.01.012
|
Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 14-28. https://doi.org/10.1016/S1876-3804(15)60002-7
|
Zou, Y. R., Ta, J., Xing, Z. Y., et al., 2014. Evolution of Sedimentary Basins in Tarim during Neoproterozoic-Paleozoic. Earth Science, 39(8): 1200-1216(in Chinese with English abstract).
|
贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.
|
李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831.
|
李曰俊, 宋文杰, 吴根耀, 等, 2005. 塔里木盆地中部隐伏的晋宁期花岗闪长岩和闪长岩. 中国科学(D辑: 地球科学), 35(2): 97-104.
|
罗金海, 周鼎武, 柳益群, 等, 2007. 塔里木盆地西南缘浅变质岩的时代确定及其地质意义. 地层学杂志, 31(4): 391-394.
|
邬光辉, 2016. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例. 北京: 科学出版社.
|
邬光辉, 李浩武, 徐彦龙, 等, 2012. 塔里木克拉通基底古隆起构造-热事件及其结构与演化. 岩石学报, 28(8): 2435-2452.
|
邬光辉, 张宝收, 苏文, 等, 2009. 塔中地区志留系碎屑锆石测年及其地质意义. 地质科学, 44(3): 1025-1035.
|
叶现韬, 张传林, 2020. 塔里木西南中-新元古界研究进展. 地质调查与研究, 43(2): 161-168.
|
张传林, 李怀坤, 王洪燕, 2012. 塔里木地块前寒武纪地质研究进展评述. 地质论评, 58(5): 923-936.
|
张健, 张传林, 李怀坤, 等, 2014. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据. 岩石学报, 30(11): 3357-3365.
|
张建新, 李怀坤, 孟繁聪, 等, 2011. 塔里木盆地东南缘(阿尔金山)"变质基底" 记录的多期构造热事件: 锆石U-Pb年代学的制约. 岩石学报, 27(1): 23-46.
|
邹亚锐, 塔吉古丽, 邢作云, 等, 2014. 塔里木新元古代-古生代沉积盆地演化. 地球科学, 39(8): 1200-1216.
|