• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, Zeng Yanyan, Sun Ying, Han Shuangbao, Liu Jiangtao, 2024. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang. Earth Science, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152
    Citation: Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, Zeng Yanyan, Sun Ying, Han Shuangbao, Liu Jiangtao, 2024. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang. Earth Science, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152

    Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang

    doi: 10.3799/dqkx.2023.152
    • Received Date: 2023-07-04
    • Publish Date: 2024-11-25
    • Groundwater is the main or even the only source of drinking water in the eastern plain of Xinjiang. The pollution status of inorganic components in groundwater and their negative effects on human health are still unclear. The concentrations of common inorganic components in 183 groundwater samples were determined, and the spatial distribution characteristics of pollutants were revealed by GIS technology, positive matrix factorization (PMF) model was used for source apportionment, and the health risks of potential sources were quantified by coupling Monte Carlo simulation (MCS) and PMF based on USEPA health risk assessment model. The groundwater quality in the eastern plain of Xinjiang was mainly affected by SO42- and Cl-, and 30.60% and 17.49% of the groundwater exceeded the limit of national drinking water standard (250 mg·L-1), respectively, the high value points are concentrated in Santanghu Town of Balikun County, the southeast of Gaochang District and the east of Shanshan County. PMF analyzed six potential sources of inorganic components in groundwater, including leaching and evaporation concentration, aquifer lithology, agricultural activity, biogeochemical process, redox environment and geological environment background, the contribution rates were 82.43%, 7.64%, 6.87%, 1.96%, 0.80% and 0.30% respectively. The results of health risk assessment show that Cl- was the main inorganic pollutant harmful to human health, and the non-carcinogenic risk of adults and children could be neglected. The contribution rate of leaching and evaporation concentration to the non-carcinogenic risk of adults and children were more than 95.00%. Considering the safety of drinking water, the high value area of Cl- should be selected as the main pollution management area.

       

    • Ali, S., Ali, H., Pakdel, M., et al., 2022. Spatial Analysis and Probabilistic Risk Assessment of Exposure to Fluoride in Drinking Water Using GIS and Monte Carlo Simulation. Environmental Science and Pollution Research International, 29(4): 5881-5890. https://doi.org/10.1007/s11356-021-16075-8
      Bai, F., Zhou, J. L., Zeng, Y. Y., 2022. Hydrochemical Characteristics and Quality of Groundwater in the Plains of the Turpan Basin. Arid Zone Research, 39(2): 419-428 (in Chinese with English abstract).
      Bai, M., Zhang, J., Li, X. X., et al., 2015. Distribution Characteristic of Groundwater Storage in Santanghu Basin of Balikun County, Xinjiang. Xinjiang Geology, 33(2): 270-274 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2015.02.023
      Chen, L., 2014. The Study of Regional Hydrogeological Conditions and Groundwater Circulation in Turpan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, L., Wang, G. C., Hu, F. S., et al., 2014. Groundwater Hydrochemistry and Isotope Geochemistry in the Turpan Basin, North Western China. Journal of Arid Land, 6(4): 378-388. https://doi.org/10.1007/s40333-013-0249-9
      Chen, Z. Q., Ma, T., Chen, L. Z., et al., 2023. Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain. Earth Science, 48(10): 3856-3865 (in Chinese with English abstract).
      Gulgundi, M. S., Shetty, A., 2019. Source Apportionment of Groundwater Pollution Using Unmix and Positive Matrix Factorization. Environmental Processes, 6(2): 457-473. https://doi.org/10.1007/s40710-019-00373-y
      Guo, X. R., Zuo, R., Shan, D., et al., 2017. Source Apportionment of Pollution in Groundwater Source Area Using Factor Analysis and Positive Matrix Factorization Methods. Human and Ecological Risk Assessment, 23(6): 1417-1436. https://doi.org/10.1080/10807039.2017.1322894
      Han, L. L., Wang, H. L., Ge, L. H., et al., 2023. Transition of Source/Sink Processes and Fate of Ammonium in Groundwater along with Redox Gradients. Water Research, 231: 119600. https://doi.org/10.1016/j.watres.2023.119600
      Huston, R., Chan, Y. C., Chapman, H., et al., 2012. Source Apportionment of Heavy Metals and Ionic Contaminants in Rainwater Tanks in a Subtropical Urban Area in Australia. Water Research, 46(4): 1121-1132. https://doi.org/10.1016/j.watres.2011.12.008
      Jiang, W. J., Wang, G. C., Sheng, Y. Z., et al., 2016. Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, North Western China. Exposure and Health, 8(3): 389-400. https://doi.org/10.1007/s12403-016-0209-7
      Khan, S., Cao, Q., Zheng, Y. M., et al., 2008. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environmental Pollution, 152(3): 686-692. https://doi.org/10.1016/j.envpol.2007.06.056
      Lei, M., Zhou, J. L., Zhou, Y. Z., et al., 2022. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutants of Surface Water and Groundwater in the Southern Margin of Junggar Basin, Xinjiang, China. Journal of Environmental Management, 319: 115757. https://doi.org/10.1016/j.jenvman.2022.115757
      Leong, J. Y. C., Chong, M. N., Poh, P. E., et al., 2017. Longitudinal Assessment of Rainwater Quality under Tropical Climatic Conditions in Enabling Effective Rainwater Harvesting and Reuse Schemes. Journal of Cleaner Production, 143: 64-75. https://doi.org/10.1016/j.jclepro.2016.12.149
      Li, D. N., Gao, X. B., Wang, Y. X., et al., 2018. Diverse Mechanisms Drive Fluoride Enrichment in Groundwater in Two Neighboring Sites in Northern China. Environmental Pollution, 237: 430-441. https://doi.org/10.1016/j.envpol.2018.02.072
      Li, T. D., Liu, Y., 2022. Optimize Ecological Environment and Ensure People's Health. Earth Science, 47(10): 3477-3490 (in Chinese with English abstract).
      Liang, X. J., Xiao, C. L., Sheng, H. X., et al., 2007. Migration and Transformation of Ammonia-Nitrite-Nitrates in Groundwater in the City of Jilin. Journal of Jilin University (Earth Science Edition), 37(2): 335-340, 345 (in Chinese with English abstract).
      Liu, J. T., Peng, Y. M., Li, C. S., et al., 2021. An Investigation into the Hydrochemistry, Quality and Risk to Human Health of Groundwater in the Central Region of Shandong Province, North China. Journal of Cleaner Production, 282: 125416. https://doi.org/10.1016/j.jclepro.2020.125416
      Liu, L. N., Wu, J. H., He, S., et al., 2022. Occurrence and Distribution of Groundwater Fluoride and Manganese in the Weining Plain (China) and Their Probabilistic Health Risk Quantification. Exposure and Health, 14(2): 263-279. https://doi.org/10.1007/s12403-021-00434-4
      Lu, M. A., 2007. Multistage Evolution of the Basin-and-Range Structure of the Eastern Section of the Tianshan Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2016. Analysis and Evaluation of Groundwater Quality in the Plain Areas of Barkol-Yiwu Basin, Xinjiang. Journal of Xinjiang Agricultural University, 39(3): 253-258 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-8614.2016.03.014
      Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2017. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Plain Areas of Barkol-Yiwu Basin, Xinjiang. Environmental Chemistry, 36(2): 380-389 (in Chinese with English abstract).
      Ma, W. C., Tai, L. Y., Qiao, Z., et al., 2018. Contamination Source Apportionment and Health Risk Assessment of Heavy Metals in Soil around Municipal Solid Waste Incinerator: A Case Study in North China. Science of the Total Environment, 631: 348-357. https://doi.org/10.1016/j.scitotenv.2018.03.011
      Morisset, T., Ramirez-Martinez, A., Wesolek, N., et al., 2013. Probabilistic Mercury Multimedia Exposure Assessment in Small Children and Risk Assessment. Environment International, 59: 431-441. https://doi.org/10.1016/j.envint.2013.07.003
      Mukherjee, I., Singh, U. K., 2022. Environmental Fate and Health Exposures of the Geogenic and Anthropogenic Contaminants in Potable Groundwater of Lower Ganga Basin, India. Geoscience Frontiers, 13(3): 101365. https://doi.org/10.1016/j.gsf.2022.101365
      Paatero, P., Tapper, U., 1994. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5(2): 111-126. https://doi.org/10.1002/env.3170050203
      Ramesh, R., Subramanian, M., Lakshmanan, E., et al., 2021. Human Health Risk Assessment Using Monte Carlo Simulations for Groundwater with Uranium in Southern India. Ecotoxicology and Environmental Safety, 226: 112781. https://doi.org/10.1016/j.ecoenv.2021.112781
      Raza, M., Hussain, F., Lee, J. Y., et al., 2017. Groundwater Status in Pakistan: A Review of Contamination, Health Risks, and Potential Needs. Critical Reviews in Environmental Science and Technology, 47(18): 1713-1762. https://doi.org/10.1080/10643389.2017.1400852
      Rodvang, S. J., Mikalson, D. M., Ryan, M. C., 2004. Changes in Ground Water Quality in an Irrigated Area of Southern Alberta. Journal of Environmental Quality, 33(2): 476-487. https://doi.org/10.2134/jeq2004.4760
      Soleimani, H., Nasri, O., Ghoochani, M., et al., 2022. Groundwater Quality Evaluation and Risk Assessment of Nitrate Using Monte Carlo Simulation and Sensitivity Analysis in Rural Areas of Divandarreh County, Kurdistan Province, Iran. International Journal of Environmental Analytical Chemistry, 102(10): 2213-2231. https://doi.org/10.1080/03067319.2020.1751147
      Veizis, I. E., Cotton, C. U., 2007. Role of Kidney Chloride Channels in Health and Disease. Pediatric Nephrology, 22(6): 770-777. https://doi.org/10.1007/s00467-006-0355-4
      Wang, G. X., Cheng, G. D., 2000. The Distributing Regularity of Fluorine and Its Environmental Characteristics in Arid Area of Northwest China. Scientia Geographica Sinica, 20(2): 153-159 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2000.02.011
      Yang, M. R., Li, F. X., Huang, C. Y., et al., 2023. VOC Characteristics and Their Source Apportionment in a Coastal Industrial Area in the Yangtze River Delta, China. Journal of Environmental Sciences, 127: 483-494. https://doi.org/10.1016/j.jes.2022.05.041
      Yu, J. W., Zhou, J. L., Long, A. H., et al., 2019. A Comparative Study of Water Quality and Human Health Risk Assessment in Longevity Area and Adjacent Non-Longevity Area. International Journal of Environmental Research and Public Health, 16(19): 3737. https://doi.org/10.3390/ijerph16193737
      Yu, L., Zheng, T. Y., Yuan, R. Y., et al., 2022. APCS-MLR Model: A Convenient and Fast Method for Quantitative Identification of Nitrate Pollution Sources in Groundwater. Journal of Environmental Management, 314: 115101. https://doi.org/10.1016/j.jenvman.2022.115101
      Zanotti, C., Rotiroti, M., Fumagalli, L., et al., 2019. Groundwater and Surface Water Quality Characterization through Positive Matrix Factorization Combined with GIS Approach. Water Research, 159: 122-134. https://doi.org/10.1016/j.watres.2019.04.058
      Zhang, H., Cheng, S. Q., Li, H. F., et al., 2020. Groundwater Pollution Source Identification and Apportionment Using PMF and PCA-APCA-MLR Receptor Models in a Typical Mixed Land-Use Area in Southwestern China. Science of the Total Environment, 741: 140383. https://doi.org/10.1016/j.scitotenv.2020.140383
      Zhang, X. W., He, J. T., Huang, G. X., 2021. Iron and Manganese in Shallow Groundwater in Shijiazhuang: Distribution Characteristics and a Cause Analysis. Earth Science Frontiers, 28(4): 206-218 (in Chinese with English abstract).
      Zhang, Y., Sun, J. C., Huang, G. X., et al., 2011. A Preliminary Study of Natural Background Levels of Groundwater in the Zhujiang River Delta. Geology in China, 38(1): 190-196 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.01.020
      Zhao, Z. Y., 2021. Water Quality Investigation and Risk Assessment of Rural Water Sources in Northeast China (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      白凡, 周金龙, 曾妍妍, 2022. 吐鲁番盆地平原区地下水水化学特征及水质评价. 干旱区研究, 39(2): 419-428.
      白铭, 张静, 李续续, 等, 2015. 新疆巴里坤三塘湖盆地地下水赋存分布特征. 新疆地质, 33(2): 270-274. doi: 10.3969/j.issn.1000-8845.2015.02.023
      陈鲁, 2014. 吐鲁番盆地区域水文地质条件及地下水循环研究(博士学位论文). 北京: 中国地质大学.
      陈占强, 马腾, 陈柳竹, 等, 2023. 后套平原浅层高氟地下水分布及成因. 地球科学, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
      李廷栋, 刘勇, 2022. 优化生态环境保障人民健康. 地球科学, 47(10): 3477-3490. doi: 10.3799/dqkx.2022.870
      梁秀娟, 肖长来, 盛洪勋, 等, 2007. 吉林市地下水中"三氮" 迁移转化规律. 吉林大学学报(地球科学版), 37(2): 335-340, 345.
      卢苗安, 2007. 天山东段盆山构造格局的多期演变(博士学位论文). 北京: 中国地震局地质研究所.
      栾风娇, 周金龙, 贾瑞亮, 等, 2016. 新疆巴里坤‒伊吾盆地平原区地下水质量评价及分析. 新疆农业大学学报, 39(3): 253-258. doi: 10.3969/j.issn.1007-8614.2016.03.014
      栾风娇, 周金龙, 贾瑞亮, 等, 2017. 新疆巴里坤‒伊吾盆地地下水水化学特征及成因. 环境化学, 36(2): 380-389.
      王根绪, 程国栋, 2000. 西北干旱区水中氟的分布规律及环境特征. 地理科学, 20(2): 153-159.
      张小文, 何江涛, 黄冠星, 2021. 石家庄地区浅层地下水铁锰分布特征及影响因素分析. 地学前缘, 28(4): 206-218.
      张英, 孙继朝, 黄冠星, 等, 2011. 珠江三角洲地区地下水环境背景值初步研究. 中国地质, 38(1): 190-196. doi: 10.3969/j.issn.1000-3657.2011.01.020
      赵政阳, 2021. 东北某地区村镇水源水质调查与健康风险评价(硕士学位论文). 哈尔滨: 哈尔滨工业大学.
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050100200300400
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 80.1 %META: 80.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.5 %其他: 19.5 %其他: 0.3 %其他: 0.3 %Mohali: 0.1 %Mohali: 0.1 %Seattle: 0.4 %Seattle: 0.4 %United States: 0.7 %United States: 0.7 %上海: 1.6 %上海: 1.6 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 5.1 %乌鲁木齐: 5.1 %九江: 0.3 %九江: 0.3 %伊犁: 0.3 %伊犁: 0.3 %信阳: 0.4 %信阳: 0.4 %克孜勒苏: 0.3 %克孜勒苏: 0.3 %克拉玛依: 0.6 %克拉玛依: 0.6 %内江: 0.3 %内江: 0.3 %加利福尼亚州: 0.3 %加利福尼亚州: 0.3 %北京: 4.3 %北京: 4.3 %北屯: 0.3 %北屯: 0.3 %十堰: 0.3 %十堰: 0.3 %南京: 1.5 %南京: 1.5 %南昌: 0.9 %南昌: 0.9 %台州: 0.1 %台州: 0.1 %呼和浩特: 1.2 %呼和浩特: 1.2 %和田: 0.6 %和田: 0.6 %哈密: 0.6 %哈密: 0.6 %哥伦布: 0.1 %哥伦布: 0.1 %喀什: 0.3 %喀什: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 3.7 %天津: 3.7 %太原: 0.4 %太原: 0.4 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 1.2 %巴音郭楞: 1.2 %常州: 0.1 %常州: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 5.5 %张家口: 5.5 %徐州: 0.3 %徐州: 0.3 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %昆明: 4.3 %昆明: 4.3 %杭州: 7.3 %杭州: 7.3 %松原: 0.3 %松原: 0.3 %武汉: 2.5 %武汉: 2.5 %济南: 0.6 %济南: 0.6 %海口: 0.3 %海口: 0.3 %淮南: 0.7 %淮南: 0.7 %深圳: 0.6 %深圳: 0.6 %漯河: 1.5 %漯河: 1.5 %烟台: 0.6 %烟台: 0.6 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.1 %石家庄: 0.1 %石河子: 0.3 %石河子: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 9.7 %芒廷维尤: 9.7 %苏州: 0.4 %苏州: 0.4 %菏泽: 0.4 %菏泽: 0.4 %萍乡: 0.1 %萍乡: 0.1 %衡水: 0.4 %衡水: 0.4 %衢州: 0.3 %衢州: 0.3 %西宁: 5.6 %西宁: 5.6 %西安: 1.9 %西安: 1.9 %诺沃克: 0.4 %诺沃克: 0.4 %运城: 2.1 %运城: 2.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.2 %郑州: 1.2 %重庆: 1.3 %重庆: 1.3 %金奈: 0.3 %金奈: 0.3 %银川: 0.1 %银川: 0.1 %长沙: 0.3 %长沙: 0.3 %阿克苏: 0.3 %阿克苏: 0.3 %雅安: 0.3 %雅安: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %黄石: 0.1 %黄石: 0.1 %其他其他MohaliSeattleUnited States上海临汾乌鲁木齐九江伊犁信阳克孜勒苏克拉玛依内江加利福尼亚州北京北屯十堰南京南昌台州呼和浩特和田哈密哥伦布喀什嘉兴天津太原宣城巴音郭楞常州广州张家口徐州成都扬州昆明杭州松原武汉济南海口淮南深圳漯河烟台盐城石家庄石河子秦皇岛芒廷维尤苏州菏泽萍乡衡水衢州西宁西安诺沃克运城邯郸郑州重庆金奈银川长沙阿克苏雅安鹰潭黄石

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (533) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return