• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Ding Yan, Zhou Aiguo, Li Xiaoqian, He Ningjie, Xing Xinli, 2025. Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site. Earth Science, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156
    Citation: Ding Yan, Zhou Aiguo, Li Xiaoqian, He Ningjie, Xing Xinli, 2025. Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site. Earth Science, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156

    Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site

    doi: 10.3799/dqkx.2023.156
    • Received Date: 2023-03-14
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • Soil-groundwater organic pollution in key industrial sites is a critical problem to be solved urgently in restoration of water and soil environment. The distribution of microbial communities in the soil-groundwater system plays an important role in the migration, transformation and biodegradation of these organic pollutants. Taking a typical vertical profile of a petrochemical site in the Loess Plateau in Northwest China as an example, based on 16S rRNA gene high-throughput sequencing technology, this study finely describes the vertical distribution characteristics of microbial communities structure, diversity and their metabolic function differences in the soil-vadose zone-phreatic aquifer-aquitard continuous heterogeneous media field, and reveals the impact of lithological composition and depth on the vertical distribution of microbial community structure and function.The results suggested that there were significant differences in the vertical distribution of microbial community structure and diversity in the media field of the soil-groundwater system, which exhibited different metabolic functions and degradation modes of petroleum pollutants.Propionibacteriales in the vadose zone layer and Betaproteobacteriales in the phreatic aquifer were not only the dominant species, but also the biomarker species among the groups, which contributed to the main relevant different metabolic functions.Depth and lithology separately affected different metabolic functions. Microorganisms in the vadose zone, aquifer and its underlying aquitard acted synergistically to degrade petroleum pollutants with aromatic compounds degradation and dark hydrogen oxidation, respectively.

       

    • loading
    • Abdu, N., Abdullahi, A. A., Abdulkadir, A., 2017. Heavy Metals and Soil Microbes. Environmental Chemistry Letters, 15(1): 65-84. https://doi.org/10.1007/s10311-016-0587-x
      Bruckberger, M., Gleeson, D., Bastow, T., et al., 2021. Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. Water, 13(7): 898. https://doi.org/10.3390/w13070898
      Bruckberger, M. C., Morgan, M. J., Bastow, T. P., et al., 2020. Investigation into the Microbial Communities and Associated Crude Oil-Contamination along a Gulf War Impacted Groundwater System in Kuwait. Water Research, 170: 115314. https://doi.org/10.1016/j.watres.2019.115314
      Cai, P. P., Ning, Z., He, Z., et al., 2018. Microbial Community Distributions in Soils of an Oil Exploitation Site. Environmental Science, 39(7): 3329-3338 (in Chinese with English abstract).
      Cavelan, A., Golfier, F., Colombano, S., et al., 2022. A Critical Review of the Influence of Groundwater Level Fluctuations and Temperature on LNAPL Contaminations in the Context of Climate Change. Science of the Total Environment, 806: 150412. https://doi.org/10.1016/j.scitotenv.2021.150412
      Gao, S., Liang, J. D., Teng, T. T., et al., 2019. Petroleum Contamination Evaluation and Bacterial Community Distribution in a Historic Oilfield Located in Loess Plateau in China. Applied Soil Ecology, 136: 30-42. https://doi.org/10.1016/j.apsoil.2018.12.012
      Griebler, C., Lueders, T., 2009. Microbial Biodiversity in Groundwater Ecosystems. Freshwater Biology, 54(4): 649-677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
      Guo, Y. L., Zhang, C., Wu, Q., et al., 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266 (in Chinese with English abstract).
      Huang, L. P., Ye, J. Y., Jiang, K. M., et al., 2021. Oil Contamination Drives the Transformation of Soil Microbial Communities: Co-Occurrence Pattern, Metabolic Enzymes and Culturable Hydrocarbon-Degrading Bacteria. Ecotoxicology and Environmental Safety, 225: 112740. https://doi.org/10.1016/j.ecoenv.2021.112740
      Karimi, B., Terrat, S., Dequiedt, S., et al., 2018. Biogeography of Soil Bacteria and Archaea across France. Science Advances, 4(7): eaat1808. https://doi.org/10.1126/sciadv.aat1808
      Li, X., Wen, Z., Zhan, H. B., et al., 2021. Laboratory Observations for Two-Dimensional Solute Transport in an Aquifer-Aquitard System. Environmental Science and Pollution Research International, 28(29): 38664-38678. https://doi.org/10.1007/s11356-021-13123-1
      Liao, W. F., Tong, D., Li, Z. W., et al., 2021. Characteristics of Microbial Community Composition and Its Relationship with Carbon, Nitrogen and Sulfur in Sediments. Science of the Total Environment, 795: 148848. https://doi.org/10.1016/j.scitotenv.2021.148848
      Lin, Y. B., Ye, Y. M., Hu, Y. M., et al., 2019. The Variation in Microbial Community Structure under Different Heavy Metal Contamination Levels in Paddy Soils. Ecotoxicology and Environmental Safety, 180: 557-564. https://doi.org/10.1016/j.ecoenv.2019.05.057
      Liu, Q. L., Tang, J. C., Liu, X. M., et al., 2019. Vertical Response of Microbial Community and Degrading Genes to Petroleum Hydrocarbon Contamination in Saline Alkaline Soil. Journal of Environmental Sciences, 81: 80-92. https://doi.org/10.1016/j.jes.2019.02.001
      Ma, Y., Zhao, H. Z., Shan, Q. J., et al., 2021. K-Strategy Species Plays a Pivotal Role in the Natural Attenuation of Petroleum Hydrocarbon Pollution in Aquifers. Journal of Hazardous Materials, 420: 126559. https://doi.org/10.1016/j.jhazmat.2021.126559
      Ma, Y. J., Wang, Y. T., Chen, Q., et al., 2020. Assessment of Heavy Metal Pollution and the Effect on Bacterial Community in Acidic and Neutral Soils. Ecological Indicators, 117: 106626. https://doi.org/10.1016/j.ecolind.2020.106626
      Mineo, S., 2023. Groundwater and Soil Contamination by LNAPL: State of the Art and Future Challenges. Science of the Total Environment, 874: 162394. https://doi.org/10.1016/j.scitotenv.2023.162394
      Ogutcu, H., Kantar, F., Alaylar, B., et al., 2022. Isolation and Characterization of Hydrocarbon and Petroleum Degrading Bacteria from Polluted Soil with Petroleum and Derivatives by MALDI-TOF MS Method. Geomicrobiology Journal, 39: 757-766. https://doi.org/10.1080/01490451.2022.2074575
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effects and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Rakoczy, J., Schleinitz, K. M., Müller, N., et al., 2011. Effects of Hydrogen and Acetate on Benzene Mineralisation under Sulphate-Reducing Conditions. Fems Microbiology Ecology, 77(2): 238-247. https://doi.org/10.1111/j.1574-6941.2011.01101.x
      Semenova, E. M., Babich, T. L., Sokolova, D. S., et al., 2021. Microbial Diversity of Hydrocarbon- Contaminated Soils of the Franz Josef Land Archipelago. Microbiology, 90(6): 721-730. https://doi.org/10.1134/S0026261721060138
      Sheng, Y. Z., Li, G. H., Dong, H. L., et al., 2021. Distinct Assembly Processes Shape Bacterial Communities along Unsaturated, Groundwater Fluctuated, and Saturated Zones. Science of the Total Environment, 761: 143303. https://doi.org/10.1016/j.scitotenv.2020.143303
      Stewart, L. D., Chambon, J. C., Widdowson, M. A., et al., 2022. Upscaled Modeling of Complex DNAPL Dissolution. Journal of Contaminant Hydrology, 244: 103920. https://doi.org/10.1016/j.jconhyd.2021.103920
      Sun, S., Badgley, B. D., 2019. Changes in Microbial Functional Genes within the Soil Metagenome during Forest Ecosystem Restoration. Soil Biology and Biochemistry, 135: 163-172. https://doi.org/10.1016/j.soilbio.2019.05.004
      Sun, Y. J., Ding, A. Z., Zhao, X. H., et al., 2022. Response of Soil Microbial Communities to Petroleum Hydrocarbons at a Multi-Contaminated Industrial Site in Lanzhou, China. Chemosphere, 306: 135559. https://doi.org/10.1016/j.chemosphere.2022.135559
      van der Zaan, B. M., Saia, F. T., Stams, A. J. M., et al., 2012. Anaerobic Benzene Degradation under Denitrifying Conditions: Peptococcaceae as Dominant Benzene Degraders and Evidence for a Syntrophic Process. Environmental Microbiology, 14(5): 1171-1181. https://doi.org/10.1111/j.1462-2920.2012.02697.x
      Wang, J. L., Zhang, Y. L., Ding, Y., et al., 2023a. Comparing the Indigenous Microorganism System in Typical Petroleum-Contaminated Groundwater. Chemosphere, 311: 137173. https://doi.org/10.1016/j.chemosphere.2022.137173
      Wang, Y., Bian, J. M., Sun, X. Q., et al., 2023b. Sensitivity-Dependent Dynamic Searching Approach Coupling Multi-Intelligent Surrogates in Homotopy Mechanism for Groundwater DNAPL-Source Inversion. Journal of Contaminant Hydrology, 255: 104151. https://doi.org/10.1016/j.jconhyd.2023.104151
      Wang, X. S., Guan, X. Y., Zhang, X. J., et al., 2020. Microbial Communities in Petroleum-Contaminated Seasonally Frozen Soil and Their Response to Temperature Changes. Chemosphere, 258: 127375. https://doi.org/10.1016/j.chemosphere.2020.127375
      Wei, Z., Wang, J. J., Gaston, L. A., et al., 2020. Remediation of Crude Oil-Contaminated Coastal Marsh Soil: Integrated Effect of Biochar, Rhamnolipid Biosurfactant and Nitrogen Application. Journal of Hazardous Materials, 396: 122595. https://doi.org/10.1016/j.jhazmat.2020.122595
      Xiao, X., Zheng, Q. R., Shen, R. F., et al., 2022. Patterns of Groundwater Bacterial Communities along the Petroleum Hydrocarbon Gradient. Journal of Environmental Chemical Engineering, 10(6): 108773. https://doi.org/10.1016/j.jece.2022.108773
      Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081 (in Chinese with English abstract).
      Xiong, G. Y., Wu, J. C., Yang, Y., et al., 2022. Microbial Fields and Multi-Field Coupling in Organic Contaminated Soil-Groundwater Systems. Earth Science Frontiers, 29(3): 189-199 (in Chinese with English abstract).
      Ye, X. Y., Chen, X. X., Yu, B., et al., 2022. Pollutant Distribution and Microbial Characteristics at a Petrochemical Site in the Yangtze River Economic Belt. Earth Science Frontiers, 29(3): 239-247 (in Chinese with English abstract).
      Zhang, P., Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract).
      Zhang, Q., Wang, G. C., Sugiura, N., et al., 2014. Distribution of Petroleum Hydrocarbons in Soils and the Underlying Unsaturated Subsurface at an Abandoned Petrochemical Site, North China. Hydrological Processes, 28(4): 2185-2191. https://doi.org/10.1002/hyp.9770
      Zhao, F. Z., Ren, C. J., Zhang, L., et al., 2018. Changes in Soil Microbial Community are Linked to Soil Carbon Fractions After Afforestation. European Journal of Soil Science, 69(2): 370-379. https://doi.org/10.1111/ejss.12525
      Zhou, A. X., Zhang, Y. L., Dong, T. Z., et al., 2015. Response of the Microbial Community to Seasonal Groundwater Level Fluctuations in Petroleum Hydrocarbon-Contaminated Groundwater. Environmental Science and Pollution Research, 22(13): 10094-10106. https://doi.org/10.1007/s11356-015-4183-6
      Zhu, B. L., Friedrich, S., Wang, Z., et al., 2020. Availability of Nitrite and Nitrate as Electron Acceptors Modulates Anaerobic Toluene-Degrading Communities in Aquifer Sediments. Frontiers in Microbiology, 11: 1867. https://doi.org/10.3389/fmicb.2020.01867
      蔡萍萍, 宁卓, 何泽, 等, 2018. 采油井场土壤微生物群落结构分布. 环境科学, 39(7): 3329-3338.
      郭永丽, 章程, 吴庆, 等, 2021. 岩溶裂隙含水层中石油类有机物的自然衰减机制. 地球科学, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      熊贵耀, 吴吉春, 杨蕴, 等, 2022. 有机污染土壤-地下水系统中的微生物场及多场耦合研究. 地学前缘, 29(3): 189-199.
      叶翔宇, 陈雪霞, 于波, 等, 2022. 长江经济带某石化场地土壤中污染物分布与微生物特征. 地学前缘, 29(3): 239-247.
      张攀, 谢先军, 黎清华, 等, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (57) PDF downloads(5) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return