• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Li Shanyou, Chen Xin, Lu Jianqi, Ma Qiang, Xie Zhinan, Tao Dongwang, Li Wei, 2024. Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost. Earth Science, 49(2): 379-390. doi: 10.3799/dqkx.2023.159
    Citation: Li Shanyou, Chen Xin, Lu Jianqi, Ma Qiang, Xie Zhinan, Tao Dongwang, Li Wei, 2024. Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost. Earth Science, 49(2): 379-390. doi: 10.3799/dqkx.2023.159

    Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost

    doi: 10.3799/dqkx.2023.159
    • Received Date: 2023-02-05
    • Publish Date: 2024-02-25
    • A key challenge in earthquake early warning (EEW) research is to predict whether the final intensity at a station during an earthquake will exceed 6 degrees using only a small amount of P-wave information received by the station. In this paper, we propose a real-time intensity threshold discrimination model based on Extreme Gradient Boosting Tree (XGBoost). The model uses five features calculated from the information within 3 seconds after receiving P-waves as input features, and uses the threshold of whether the final instrumental seismic intensity at the station will exceed 6 degrees. A total of 4 353 acceleration records from 460 earthquakes recorded by the Japanese K-NET seismic network from 1996 to 2022 were used to establish the XGBoost-based real-time intensity threshold discrimination model (XGBoost-ITD). The results indicate that the model's discrimination accuracy rate is 93% for low intensity and 88% for high intensity. Compared with the support vector machine classification method and the traditional method under the same dataset, the XGBoost method shows higher discrimination accuracy.

       

    • loading
    • Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693. https://doi.org/10.1785/gssrl.80.5.682
      Asselman, A., Khaldi, M., Aammou, S., 2021. Enhancing the Prediction of Student Performance Based on the Machine Learning XGBoost Algorithm. Interactive Learning Environments, 31(6): 3360-3379. https://doi.org/10.1080/10494820.2021.1928235
      Böse, M., Felizardo, C., Heaton, T. H., 2015. Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System. Seismological Research Letters, 86(6): 1692-1704. https://doi.org/10.1785/0220150154
      Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, 785-794. https://doi.org/10.1145/2939672.2939785
      Hildyard, M. W., Rietbrock, A., 2010. Tpd, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698. https://doi.org/10.1785/0120080368
      Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. (in Chinese with English abstract).
      Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. (in Chinese with English abstract)
      Jin, X., Zhang, H. C., Li, J., et al., 2012. Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics, 55(3): 925-936. (in Chinese with English abstract)
      Jiang, B. G., Ma, Q., Tao, D. W., 2022. Continuous Estimation of Earthquake Early Warning Magnitude Based on Convolutional Neural Network. World Earthquake Engineering, 38(1): 213-228. (in Chinese with English abstract)
      Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33(1): 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
      Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
      Lundberg, S. M., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Computer Science, 1-10. https://doi. org/https://doi.org/10.48550/arXiv.1705.07874.
      Lundberg, S. M., Erion, G. G., Lee, S. I., 2018. Consistent Individualized Feature Attribution for Tree Ensembles. Computer Science, 1-9. https://doi.org/10.48550/arXiv.1802.03888.
      Li, S. Y., 2018. Approaching the Earthquake Early Warning. Overview of Disaster Prevention, (2): 14-23. (in Chinese)
      Lu, J. Q., Li, S. Y., He, P. Y., et al., 2020. Energy- and Predominant-Period-Dependent P-Wave Onset Picker (EDP-Picker). Seismological Research Letters, 91(4): 2355-2367. https://doi.org/10.1785/0220190260
      Li, S. Y., Wang. B. R., Lu J. Q., et al. 2023. Prediction of Instrumental Intensity for A Single Station Using A LSTM Neural Network. Chinese Journal of Geophysics(in Chinese with English abstract).
      Liu, L., Shen, J. K., Zhang, L. X., 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. (in Chinese with English abstract).
      Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin(in Chinese with English abstract).
      Nielsen, D., 2016. Tree Boosting With XGBoost: Why Does XGBoost Win "Every" Machine Learning Competition? (Dissertation). Norwegian University of Science and Technology, Norway.
      Nicole, D. C., Tiziana, D. A., Claudio, D. S., et al., 2023. Comparing Filter and Wrapper Approaches for Feature Selection in Handwritten Character Recognition, Pattern Recognition Letters, 168(5): 39-46. https://doi.org/10.1016/j.patrec.2023.02.028
      Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016gl071672
      Satriano, C., Lomax, A., Zollo, A., 2008. Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America, 98(3): 1482-1494. https://doi.org/10.1785/0120060159
      State Administration for Market Regulation, Standardization Administration of China., 2020. GB/T-17742-2020, The Chinese seismic intensity scale. China Quality and Standards Publishing & Media Co., Ltd, Beijing (in Chinese)
      Song, J. D., Yu, C., Li, S. Y., 2022. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568. (in Chinese with English abstract)
      Wu, Y. M., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
      Wu, Y. M., Kanamori, H., 2008. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 8(1): 1-9. https://doi.org/10.3390/s8010001
      Wen, Z. Y., He, B. S., Kotagiri, R., et al., 2018. Efficient Gradient Boosted Decision Tree Training on GPUs. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 234-243. https://doi.org/10.1109/IPDPS40821.2018
      Wang, A., Li, S. Y., Lu, J. Q., et al., 2023. Prediction of PGA in Earthquake Early Warning Using a Long Short-Term Memory Neural Network. Geophysical Journal International, 234(1): 12-24. https://doi.org/10.1093/gji/ggad067
      Wang, M., Yang, J. L., Wang, X., et al., 2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142. (in Chinese with English abstract).
      Yamada, M., Heaton, T., Beck, J., 2007. Real-Time Estimation of Fault Rupture Extent Using Near-Source Versus Far-Source Classification. Bulletin of the Seismological Society of America, 97(6): 1890-1910. https://doi.org/10.1785/0120060243
      Yu, C., Song, J. D., Li, S. Y., 2021. Prediction of Peak Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72. (in Chinese with English abstract).
      国家市场监督管理总局, 国家标准化管理委员会, 2020. GB/T-17742-2020, 中国地震烈度表. 北京: 中国标准出版社.
      郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
      胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
      金星, 张红才, 李军, 等, 2012. 地震预警连续定位方法研究. 地球物理学报, 55(3): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201203021.htm
      江炳根, 马强, 陶冬旺, 2022. 基于卷积神经网络的地震预警震级持续估算方法研究. 世界地震工程, 38(1): 213-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202201022.htm
      李山有, 2018. 走近地震预警. 防灾博览, (2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FZBL201802010.htm
      李山有, 王博睿, 卢建旗等, 2023. 基于LSTM网络的单台仪器地震烈度预测模型. 地球物理学报. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202402012.htm
      刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779. doi: 10.3799/dqkx.2022.481
      马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202102014.htm
      王民, 杨金路, 王鑫, 等. 2023. 基于随机森林算法的泥页岩岩相测井识别. 地球科学, 48(1): 130-142. doi: 10.3799/dqkx.2022.181
      余聪, 宋晋东, 李山有, 2021. 基于支持向量机的现地地震预警地震动峰值预测. 振动与冲击, 40(3): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202103010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(7)

      Article views (541) PDF downloads(124) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return