| Citation: | Li Shanyou, Chen Xin, Lu Jianqi, Ma Qiang, Xie Zhinan, Tao Dongwang, Li Wei, 2024. Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost. Earth Science, 49(2): 379-390. doi: 10.3799/dqkx.2023.159 | 
	                | 
					 Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693.  https://doi.org/10.1785/gssrl.80.5.682 
						
					 | 
			
| 
					 Asselman, A., Khaldi, M., Aammou, S., 2021. Enhancing the Prediction of Student Performance Based on the Machine Learning XGBoost Algorithm. Interactive Learning Environments, 31(6): 3360-3379.  https://doi.org/10.1080/10494820.2021.1928235 
						
					 | 
			
| 
					 Böse, M., Felizardo, C., Heaton, T. H., 2015. Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System. Seismological Research Letters, 86(6): 1692-1704.  https://doi.org/10.1785/0220150154 
						
					 | 
			
| 
					 Chen, T. Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, 785-794.  https://doi.org/10.1145/2939672.2939785 
						
					 | 
			
| 
					 Hildyard, M. W., Rietbrock, A., 2010. Tpd, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698.  https://doi.org/10.1785/0120080368 
						
					 | 
			
| 
					 Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106. (in Chinese with English abstract). 
						
					 | 
			
| 
					 Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. (in Chinese with English abstract) 
						
					 | 
			
| 
					 Jin, X., Zhang, H. C., Li, J., et al., 2012. Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics, 55(3): 925-936. (in Chinese with English abstract) 
						
					 | 
			
| 
					 Jiang, B. G., Ma, Q., Tao, D. W., 2022. Continuous Estimation of Earthquake Early Warning Magnitude Based on Convolutional Neural Network. World Earthquake Engineering, 38(1): 213-228. (in Chinese with English abstract) 
						
					 | 
			
| 
					 Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33(1): 195-214.  https://doi.org/10.1146/annurev.earth.33.092203.122626 
						
					 | 
			
| 
					 Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341.  https://doi.org/10.1007/s00024-014-0964-y 
						
					 | 
			
| 
					 Lundberg, S. M., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Computer Science, 1-10.  https://doi. org/https://doi.org/10.48550/arXiv.1705.07874. 
						
					 | 
			
| 
					 Lundberg, S. M., Erion, G. G., Lee, S. I., 2018. Consistent Individualized Feature Attribution for Tree Ensembles. Computer Science, 1-9.  https://doi.org/10.48550/arXiv.1802.03888. 
						
					 | 
			
| 
					 Li, S. Y., 2018. Approaching the Earthquake Early Warning. Overview of Disaster Prevention, (2): 14-23. (in Chinese) 
						
					 | 
			
| 
					 Lu, J. Q., Li, S. Y., He, P. Y., et al., 2020. Energy- and Predominant-Period-Dependent P-Wave Onset Picker (EDP-Picker). Seismological Research Letters, 91(4): 2355-2367.  https://doi.org/10.1785/0220190260 
						
					 | 
			
| 
					 Li, S. Y., Wang. B. R., Lu J. Q., et al. 2023. Prediction of Instrumental Intensity for A Single Station Using A LSTM Neural Network. Chinese Journal of Geophysics(in Chinese with English abstract). 
						
					 | 
			
| 
					 Liu, L., Shen, J. K., Zhang, L. X., 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. (in Chinese with English abstract). 
						
					 | 
			
| 
					 Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin(in Chinese with English abstract). 
						
					 | 
			
| 
					 Nielsen, D., 2016. Tree Boosting With XGBoost: Why Does XGBoost Win "Every" Machine Learning Competition? (Dissertation). Norwegian University of Science and Technology, Norway. 
						
					 | 
			
| 
					 Nicole, D. C., Tiziana, D. A., Claudio, D. S., et al., 2023. Comparing Filter and Wrapper Approaches for Feature Selection in Handwritten Character Recognition, Pattern Recognition Letters, 168(5): 39-46.  https://doi.org/10.1016/j.patrec.2023.02.028 
						
					 | 
			
| 
					 Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44(4): 1724-1731.  https://doi.org/10.1002/2016gl071672 
						
					 | 
			
| 
					 Satriano, C., Lomax, A., Zollo, A., 2008. Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America, 98(3): 1482-1494.  https://doi.org/10.1785/0120060159 
						
					 | 
			
| 
					 State Administration for Market Regulation, Standardization Administration of China., 2020. GB/T-17742-2020, The Chinese seismic intensity scale. China Quality and Standards Publishing & Media Co., Ltd, Beijing (in Chinese) 
						
					 | 
			
| 
					 Song, J. D., Yu, C., Li, S. Y., 2022. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568. (in Chinese with English abstract) 
						
					 | 
			
| 
					 Wu, Y. M., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185.  https://doi.org/10.1785/0120040193 
						
					 | 
			
| 
					 Wu, Y. M., Kanamori, H., 2008. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 8(1): 1-9.  https://doi.org/10.3390/s8010001 
						
					 | 
			
| 
					 Wen, Z. Y., He, B. S., Kotagiri, R., et al., 2018. Efficient Gradient Boosted Decision Tree Training on GPUs. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 234-243.  https://doi.org/10.1109/IPDPS40821.2018 
						
					 | 
			
| 
					 Wang, A., Li, S. Y., Lu, J. Q., et al., 2023. Prediction of PGA in Earthquake Early Warning Using a Long Short-Term Memory Neural Network. Geophysical Journal International, 234(1): 12-24.  https://doi.org/10.1093/gji/ggad067 
						
					 | 
			
| 
					 Wang, M., Yang, J. L., Wang, X., et al., 2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142. (in Chinese with English abstract). 
						
					 | 
			
| 
					 Yamada, M., Heaton, T., Beck, J., 2007. Real-Time Estimation of Fault Rupture Extent Using Near-Source Versus Far-Source Classification. Bulletin of the Seismological Society of America, 97(6): 1890-1910.  https://doi.org/10.1785/0120060243 
						
					 | 
			
| 
					 Yu, C., Song, J. D., Li, S. Y., 2021. Prediction of Peak Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72. (in Chinese with English abstract). 
						
					 | 
			
| 
					 国家市场监督管理总局, 国家标准化管理委员会, 2020. GB/T-17742-2020, 中国地震烈度表. 北京: 中国标准出版社. 
					
					 | 
			
| 
					 郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi:  10.3799/dqkx.2020.360 
					
					 | 
			
| 
					 胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi:  10.3799/dqkx.2022.338 
					
					 | 
			
| 
					 金星, 张红才, 李军, 等, 2012. 地震预警连续定位方法研究. 地球物理学报, 55(3): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201203021.htm 
					
					 | 
			
| 
					 江炳根, 马强, 陶冬旺, 2022. 基于卷积神经网络的地震预警震级持续估算方法研究. 世界地震工程, 38(1): 213-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202201022.htm 
					
					 | 
			
| 
					 李山有, 2018. 走近地震预警. 防灾博览, (2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FZBL201802010.htm 
					
					 | 
			
| 
					 李山有, 王博睿, 卢建旗等, 2023. 基于LSTM网络的单台仪器地震烈度预测模型. 地球物理学报. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202402012.htm 
					
					 | 
			
| 
					 刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779. doi:  10.3799/dqkx.2022.481 
					
					 | 
			
| 
					 马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所. 
					
					 | 
			
| 
					 宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202102014.htm 
					
					 | 
			
| 
					 王民, 杨金路, 王鑫, 等. 2023. 基于随机森林算法的泥页岩岩相测井识别. 地球科学, 48(1): 130-142. doi:  10.3799/dqkx.2022.181 
					
					 | 
			
| 
					 余聪, 宋晋东, 李山有, 2021. 基于支持向量机的现地地震预警地震动峰值预测. 振动与冲击, 40(3): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202103010.htm 
					
					 |