• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 2
    Feb.  2024
    Turn off MathJax
    Article Contents
    Li Hongwei, Xu Zhiguo, Shi Jianyu, Wang Zongchen, Yang Huaiwei, 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
    Citation: Li Hongwei, Xu Zhiguo, Shi Jianyu, Wang Zongchen, Yang Huaiwei, 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413. doi: 10.3799/dqkx.2023.168

    Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters

    doi: 10.3799/dqkx.2023.168
    • Received Date: 2023-03-05
    • Publish Date: 2024-02-25
    • In order to improve tsunami mitigation capabilities along the coast of China and to increase public awareness of tsunami hazards, this paper systematically analyses the potential threat of tsunamis caused by earthquakes in the Ryukyu Trench subduction zone off the southeast coast of China and the eastern part of Taiwan Province. We quantitatively assess their tsunami hazard based on a probabilistic approach of logic tree and Monte Carlo simulation. Considering the scarcity of historical earthquake records in the Ryukyu Trench, we determined the maximum magnitude of potential earthquakes in the region based on the dynamic parameters of the subduction zone. At the same time, a logical tree of tsunami source parameters was constructed to analyse the uncertainty of the assessment results by integrating previous research results on paleotsunamis in the region. The results show that the maximum tsunami wave amplitude can reach 2-3 m around Yilan and Hualien counties in eastern Taiwan Province in the return period of 2000 years; the maximum tsunami wave amplitude can also reach about 0.6 m and 0.8 m in Shanghai and Zhoushan at the same time. Therefore, although there are almost no catastrophic tsunami events in the historical record of the Ryukyu Trench, its tsunami threat to the southeast coast of China, especially the eastern part of Taiwan, cannot be ignored.

       

    • loading
    • Ando, M., Kitamura, A., Tu, Y., et al., 2018. Source of High Tsunamis along the Southernmost Ryukyu Trench Inferred from Tsunami Stratigraphy. Tectonophysics, 722: 265-276. https://doi.org/10.1016/j.tecto.2017.11.007
      Ando, M., Nakamura, M., Matsumoto, T., et al., 2009. Is the Ryukyu Subduction Zone in Japan Coupled or Decoupled? The Necessity of Seafloor Crustal Deformation Observation. Earth, Planets and Space, 61: 1031-1039. https://doi.org/10.1186/Bf03352954
      Annaka, T., Satake, K., Sakakiyama, T., et al., 2007. Logic-Tree Approach for Probabilistic Tsunami Hazard Analysis and Its Applications to the Japanese Coasts. Pure and Applied Geophysics, 164: 577-592. doi: 10.1007/s00024-006-0174-3
      Bird, P., Kagan, Y. Y., 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings. Bulletin of the Seismological Society of America, 94(6): 2380-2399. doi: 10.1785/0120030107
      Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6): 2914-2926. doi: 10.1785/0120100111
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
      Davies, G., Griffin, J., 2020. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia. Pure and Applied Geophysics, 177: 1521-1548. https://doi.org/10.1007/s00024-019-02299-w
      Engdahl, E. R.; Villaseñor, A., 2002. Global Seismicity: 1900-1999. In: Lee, W. H. K., Jennings, P., Kisslinger, C., eds., International Handbook of Earthquake and Engineering Seismology. Academic Press, Amsterdam, The Netherlands; Boston, MA, USA, 2: 665-690.
      Fujiwara, O., Goto, K., Ando, R., et al., 2020. Paleotsunami Research Along the Nankai Trough and Ryukyu Trench Subduction Zones-Current Achievements and Future Challenges. Earth-Science Reviews, 210: 103333. doi: 10.1016/j.earscirev.2020.103333
      Geist, E. L., Parsons, T., 2006. Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37: 277-314. doi: 10.1007/s11069-005-4646-z
      Goda, K., Song, J., 2016. Uncertainty Modeling and Visualization for Tsunami Hazard and Risk Mapping: a Case Study for the 2011 Tohoku Earthquake. Stochastic Environmental Research and Risk Assessment, 30: 2271-2285. doi: 10.1007/s00477-015-1146-x
      Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
      Hisamatsu, A., Goto, K., Imamura, F., 2014. Local Paleo-Tsunami Size Evaluation Using Numerical Modeling for Boulder Transport at Ishigaki Island, Japan. Episodes Journal of International Geoscience, 37(4): 265-27.
      Ishibashi, K., 1981. Specification of a Soon‐to‐Occur Seismic Faulting in the Tokai District, Central Japan, Based upon Seismotectonics. Earthquake Prediction: an International Review, 4: 297-332.
      Kagan, Y. Y., 2002a. Seismic Moment Distribution Revisited: Ⅰ. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x.2002.01594.x
      Kagan, Y. Y., 2002b. Seismic Moment Distribution Revisited: Ⅱ. Moment Conservation Principle. Geophysical Journal International, 149(3): 731–754. https://doi.org/10.1046/j.1365-246X.2002.01671.x
      Kagan, Y. Y., Jackson, D. D., 2013. Tohoku Earthquake: A Surprise?. Bulletin of the Seismological Society of America, 103(2B): 1181-1194. . doi: 10.1785/0120120110
      Li, H., Yuan, Y., Xu, Z., et al., 2018. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins. Earthquakes and Multi-Hazards Around the Pacific Rim, 1: 157-176.
      Li, L., Switzer, A. D., Chan, C. H., et al., 2016. How Heterogeneous Coseismic Slip Affects Regional Probabilistic Tsunami Hazard Assessment: A Case Study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8): 6250-6272. doi: 10.1002/2016JB013111
      Mai, P. M., Beroza, G. C., 2002. A Spatial Random Field Model to Characterize Complexity in Earthquake Slip. Journal of Geophysical Research: Solid Earth, 107(B11): ESE-10.
      Nakamura, M., Sunagawa, N., 2015. Activation of Very Low Frequency Earthquakes by Slow Slip Events in the Ryukyu Trench. Geophysical Research Letters, 42(4): 1076-1082 https://doi.org/10.1002/2014GL062929
      Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., et al., 2004. Global Relations between Seismic Fault Parameters and Moment Magnitude of Earthquakes. Bulletin of the Geological Society of Greece, 36(3): 1482-1489. doi: 10.12681/bgsg.16538
      Rong, Y., Jackson, D. D., Magistrale, H., et al., 2014. Magnitude Limits of Subduction Zone Earthquakes. Bulletin of the Seismological Society of America, 104(5): 2359-2377. https://doi.org/10.1785/0120130287
      Scala, A., Lorito, S., Romano, F., et al., 2020. Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 177(3): 1497-1520. doi: 10.1007/s00024-019-02260-x
      Stirling, M., Goded, T., Berryman, K., et al., 2013. Selection of Earthquake Scaling Relationships for Seismic‐Hazard Analysis. Bulletin of the Seismological Society of America, 103(6): 2993-3011. https://doi.org/10.1785/0120130052
      Tadokoro, K., Nakamura, M., Ando, M., et al., 2018. Interplate Coupling State at the Nansei‐Shoto (Ryukyu) Trench, Japan, Deduced from Seafloor Crustal Deformation Measurements. Geophysical Research Letters, 45(14): 6869-6877. https://doi.org/10.1029/2018GL078655
      Wang, Z., Yuan, Y., Wang, P., et al., 2019. Development and Validation of a Tsunami Amplitude Forecast System Covering the Whole Pacific Ocean. Haiyang Xuebao, 41(2): 1-13(in Chinese with English abstract).
      Xiao, W. J., Song, D. F., Zhang, J. E., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106(in Chinese with English abstract).
      Xie, Z.; Wang, E.; Lyu, Y., 2022. Seismicity and Stress State in the Ryukyu Islands Subduction Zone. Sustainability, 14(22): 15146. https://doi.org/10.3390/su142215146
      Yu, F. J., Yuan, Y., Wang, P. T., et al., 2020. Modern Technologies in Earthquake-Generated Tsunami Early Warning. Science Press, Beijing, 222 (in Chinese).
      Yuan, Y., Li, H., Wei, Y., Shi, F., et al., 2021. Probabilistic Tsunami Hazard Assessment (PTHA) for Southeast Coast of Chinese Mainland and Taiwan Island. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020344. doi: 10.1029/2020JB020344
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      王宗辰, 原野, 王培涛, 等, 2019. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验. 海洋学报, 41(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201902001.htm
      肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
      于福江, 原野, 王培涛, 等, 2020. 现代地震海啸预警技术. 北京: 科学出版社, 222.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (805) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return