Citation: | Li Hongwei, Xu Zhiguo, Shi Jianyu, Wang Zongchen, Yang Huaiwei, 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413. doi: 10.3799/dqkx.2023.168 |
Ando, M., Kitamura, A., Tu, Y., et al., 2018. Source of High Tsunamis along the Southernmost Ryukyu Trench Inferred from Tsunami Stratigraphy. Tectonophysics, 722: 265-276. https://doi.org/10.1016/j.tecto.2017.11.007
|
Ando, M., Nakamura, M., Matsumoto, T., et al., 2009. Is the Ryukyu Subduction Zone in Japan Coupled or Decoupled? The Necessity of Seafloor Crustal Deformation Observation. Earth, Planets and Space, 61: 1031-1039. https://doi.org/10.1186/Bf03352954
|
Annaka, T., Satake, K., Sakakiyama, T., et al., 2007. Logic-Tree Approach for Probabilistic Tsunami Hazard Analysis and Its Applications to the Japanese Coasts. Pure and Applied Geophysics, 164: 577-592. doi: 10.1007/s00024-006-0174-3
|
Bird, P., Kagan, Y. Y., 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings. Bulletin of the Seismological Society of America, 94(6): 2380-2399. doi: 10.1785/0120030107
|
Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6): 2914-2926. doi: 10.1785/0120100111
|
Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
|
Davies, G., Griffin, J., 2020. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia. Pure and Applied Geophysics, 177: 1521-1548. https://doi.org/10.1007/s00024-019-02299-w
|
Engdahl, E. R.; Villaseñor, A., 2002. Global Seismicity: 1900-1999. In: Lee, W. H. K., Jennings, P., Kisslinger, C., eds., International Handbook of Earthquake and Engineering Seismology. Academic Press, Amsterdam, The Netherlands; Boston, MA, USA, 2: 665-690.
|
Fujiwara, O., Goto, K., Ando, R., et al., 2020. Paleotsunami Research Along the Nankai Trough and Ryukyu Trench Subduction Zones-Current Achievements and Future Challenges. Earth-Science Reviews, 210: 103333. doi: 10.1016/j.earscirev.2020.103333
|
Geist, E. L., Parsons, T., 2006. Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37: 277-314. doi: 10.1007/s11069-005-4646-z
|
Goda, K., Song, J., 2016. Uncertainty Modeling and Visualization for Tsunami Hazard and Risk Mapping: a Case Study for the 2011 Tohoku Earthquake. Stochastic Environmental Research and Risk Assessment, 30: 2271-2285. doi: 10.1007/s00477-015-1146-x
|
Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
|
Hisamatsu, A., Goto, K., Imamura, F., 2014. Local Paleo-Tsunami Size Evaluation Using Numerical Modeling for Boulder Transport at Ishigaki Island, Japan. Episodes Journal of International Geoscience, 37(4): 265-27.
|
Ishibashi, K., 1981. Specification of a Soon‐to‐Occur Seismic Faulting in the Tokai District, Central Japan, Based upon Seismotectonics. Earthquake Prediction: an International Review, 4: 297-332.
|
Kagan, Y. Y., 2002a. Seismic Moment Distribution Revisited: Ⅰ. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x.2002.01594.x
|
Kagan, Y. Y., 2002b. Seismic Moment Distribution Revisited: Ⅱ. Moment Conservation Principle. Geophysical Journal International, 149(3): 731–754. https://doi.org/10.1046/j.1365-246X.2002.01671.x
|
Kagan, Y. Y., Jackson, D. D., 2013. Tohoku Earthquake: A Surprise?. Bulletin of the Seismological Society of America, 103(2B): 1181-1194. . doi: 10.1785/0120120110
|
Li, H., Yuan, Y., Xu, Z., et al., 2018. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins. Earthquakes and Multi-Hazards Around the Pacific Rim, 1: 157-176.
|
Li, L., Switzer, A. D., Chan, C. H., et al., 2016. How Heterogeneous Coseismic Slip Affects Regional Probabilistic Tsunami Hazard Assessment: A Case Study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8): 6250-6272. doi: 10.1002/2016JB013111
|
Mai, P. M., Beroza, G. C., 2002. A Spatial Random Field Model to Characterize Complexity in Earthquake Slip. Journal of Geophysical Research: Solid Earth, 107(B11): ESE-10.
|
Nakamura, M., Sunagawa, N., 2015. Activation of Very Low Frequency Earthquakes by Slow Slip Events in the Ryukyu Trench. Geophysical Research Letters, 42(4): 1076-1082 https://doi.org/10.1002/2014GL062929
|
Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., et al., 2004. Global Relations between Seismic Fault Parameters and Moment Magnitude of Earthquakes. Bulletin of the Geological Society of Greece, 36(3): 1482-1489. doi: 10.12681/bgsg.16538
|
Rong, Y., Jackson, D. D., Magistrale, H., et al., 2014. Magnitude Limits of Subduction Zone Earthquakes. Bulletin of the Seismological Society of America, 104(5): 2359-2377. https://doi.org/10.1785/0120130287
|
Scala, A., Lorito, S., Romano, F., et al., 2020. Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 177(3): 1497-1520. doi: 10.1007/s00024-019-02260-x
|
Stirling, M., Goded, T., Berryman, K., et al., 2013. Selection of Earthquake Scaling Relationships for Seismic‐Hazard Analysis. Bulletin of the Seismological Society of America, 103(6): 2993-3011. https://doi.org/10.1785/0120130052
|
Tadokoro, K., Nakamura, M., Ando, M., et al., 2018. Interplate Coupling State at the Nansei‐Shoto (Ryukyu) Trench, Japan, Deduced from Seafloor Crustal Deformation Measurements. Geophysical Research Letters, 45(14): 6869-6877. https://doi.org/10.1029/2018GL078655
|
Wang, Z., Yuan, Y., Wang, P., et al., 2019. Development and Validation of a Tsunami Amplitude Forecast System Covering the Whole Pacific Ocean. Haiyang Xuebao, 41(2): 1-13(in Chinese with English abstract).
|
Xiao, W. J., Song, D. F., Zhang, J. E., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106(in Chinese with English abstract).
|
Xie, Z.; Wang, E.; Lyu, Y., 2022. Seismicity and Stress State in the Ryukyu Islands Subduction Zone. Sustainability, 14(22): 15146. https://doi.org/10.3390/su142215146
|
Yu, F. J., Yuan, Y., Wang, P. T., et al., 2020. Modern Technologies in Earthquake-Generated Tsunami Early Warning. Science Press, Beijing, 222 (in Chinese).
|
Yuan, Y., Li, H., Wei, Y., Shi, F., et al., 2021. Probabilistic Tsunami Hazard Assessment (PTHA) for Southeast Coast of Chinese Mainland and Taiwan Island. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020344. doi: 10.1029/2020JB020344
|
崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
|
王宗辰, 原野, 王培涛, 等, 2019. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验. 海洋学报, 41(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201902001.htm
|
肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
|
于福江, 原野, 王培涛, 等, 2020. 现代地震海啸预警技术. 北京: 科学出版社, 222.
|