• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 1
    Jan.  2025
    Turn off MathJax
    Article Contents
    Wu Qinghua, Wang Ke, 2025. Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition. Earth Science, 50(1): 311-321. doi: 10.3799/dqkx.2023.170
    Citation: Wu Qinghua, Wang Ke, 2025. Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition. Earth Science, 50(1): 311-321. doi: 10.3799/dqkx.2023.170

    Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition

    doi: 10.3799/dqkx.2023.170
    • Received Date: 2023-05-11
      Available Online: 2025-02-10
    • Publish Date: 2025-01-25
    • The occurrence of landslide is mainly caused by rainfall. Traditional treatment methods, such as spraying concrete on the surface of landslide to inhibit the penetration of rainfall on soil slopes, will fail during long-term operation resulted from failures, leading to landslides. Therefore, considering the ecological function and the long-term effectiveness of the reclamation method, this paper adopts the dual-structure of unsaturated capillary barrier layer (CBL) with fine/coarse lithology to prevent rainfall from infiltrating into the soil slope. The effects of slope (10°, 20°, 30°, 40°) and lithological characteristics (sandy loam/coarse sand, sandy loam/gravel sand, sandy loam/pebble and sandy loam/breccia) on the infiltration of rainfall into the soil slope were investigated through a series of physical model tests. Furthermore, a new method is defined to evaluate the total capacity of the capillary barrier (CCB) of the fine/coarse bilayer. The research results show that: (1) The process of preventing rainfall from infiltrating the soil slope with brilliant blue FCF (C.I.42090) dye tracer can be observed visually. (2) CCBS increases with the increase of coarse particle diameter, which is also related to the shape of pores and coarse particles, that is, the drainage efficiency of breccia with the same particle composition is higher than that of boulders. (3) The larger the slope angle of the four types of CBLS soil, the higher the drainage speed of CBL after rainfall, and the stable drainage strength and the total barrier capacity of loam/gravel sand CBL with rainfall intensity of 4.73×10-4 cm/s, could increase firstly and then decrease with the increased slope angles. It is suggested that the design slope of CBLS is 25°-27°, in order to achieve the optimal total barrier capacity. The results of this study have a certain reference value for future landslide control.

       

    • loading
    • Aubertin, M., Cifuentes, E., Apithy, S. A., et al., 2009. Analyses of Water Diversion along Inclined Covers with Capillary Barrier Effects. Canadian Geotechnical Journal, 46(10): 1146-1164. https://doi.org/10.1139/t09-050
      Chen, R., Liu, J., Ng, C. W. W., et al., 2019. Influence of Slope Angle on Water Flow in a Three-Layer Capillary Barrier Soil Cover under Heavy Rainfall. Soil Science Society of America Journal, 83(6): 1637-1647. https://doi.org/10.2136/sssaj2019.05.0135
      Chen, Y. B., Gao, Y. F., Ng, C. W. W., 2020. A New Capillary Barrier System for Retaining Wall Backfilled with Fine-Grained Soil. Computers and Geotechnics, 118: 103324. https://doi.org/10.1016/j.compgeo.2019.103324
      Deng, L. H., Zhan, L. T., Chen, Y. M., et al., 2012. Model Tests on Capillary-Barrier Cover with Unsaturated Drainage Layer. Chinese Journalof Geotechnical Engineering, 34(1): 75-80 (in Chinese with English abstract).
      Gao, C., Zhu, Y. M., Zhang, Y. W., 2022. Stability Analysis of the Inclined Capillary Barrier Covers under Rainfall Condition. Buildings, 12(8): 1218. https://doi.org/10.3390/buildings12081218
      Jiao, W. G., Zhan, L. T., Ji, Y. X., et al., 2019. Analysis on Long-Term Performance of Capillary-Barrier Cover with Unsaturated Drainage Layer. Journal of Zhejiang University (Engineering Science), 53(6): 1101-1109 (in Chinese with English abstract).
      Jiao, W. G., Zhan, L. T., Ji, Y. X., et al., 2020. Model Test and Numerical Analysis on Lateral Drainage in Capillary-Barrier Cover with Unsaturated Drainage Layer. Journal of Yangtze River Scientific Research Institute, 37(5): 92-98 (in Chinese with English abstract).
      Krisdani, H., Rahardjo, H., Leong, E. C., 2010. Application of Geosynthetic Material in Capillary Barriers for Slope Stabilisation. Geosynthetics International, 17(5): 323-331. https://doi.org/10.1680/gein.2010.17.5.323
      Luo, Y., He, S. M., He, J. C., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide. Earth Science, 39(9): 1357-1363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201409012.htm
      Morii, T., Kobayashi, K., Matsumoto, K., et al., 2020. Estimation and Observation of Water Diversion in Capillary Barrier of Soil. In: Khalili, N., Russell, A. R., Khoshghalb, A., et al., eds., Unsaturated Soils: Research & Applications. CRC Press-Taylor & Francis Group, BocaRaton, 1197-1203. https://doi.org/10.1201/9781003070580-39
      Morris, C. E., Stormont, J. C., 1999. Parametric Study of Unsaturated Drainage Layers in a Capillary Barrier. Journal of Geotechnical and Geoenvironmental Engineering, 125(12): 1057-1065. https://doi.org/10.1061/(asce)1090-0241(1999)125:12(1057)
      Parent, S. É., Cabral, A., 2006. Design of Inclined Covers with Capillary Barrier Effect. Geotechnical & Geological Engineering, 24(3): 689-710. https://doi.org/10.1007/s10706-005-3229-9
      Qian, T. W., Huo, L. J., Zhao, D. Y., 2010. Laboratory Investigation into Factors Affecting Performance of Capillary Barrier System in Unsaturated Soil. Water, Air, and Soil Pollution, 206(1): 295-306. https://doi.org/10.1007/s11270-009-0106-9
      Rahardjo, H., 2015. Capillary Barrier as a Slope Protection. In: Chen, Z., Wei, C., Sun, D., et al., eds., Unsaturated Soil Mechanics-From Theory to Practice. CRC Press-Taylor & Francis Group, BocaRaton, 23-36.
      Rahardjo, H., Gofar, N., Harnas, F., et al., 2018. Effect of Geobags on Water Flow through Capillary Barrier System. Geotechnical Engineering, 49(4): 73-78. http://www.researchgate.net/publication/331952194_Effect_of_Geobags_on_Water_Flow_through_Capillary_Barrier_System
      Rahardjo, H., Santoso, V. A., Leong, E. C., et al., 2012. Performance of an Instrumented Slope Covered by a Capillary Barrier System. Journal of Geotechnical and Geoenvironmental Engineering, 138(4): 481-490. https://doi.org/10.1061/(asce)gt.1943-5606.0000600
      Sun, C., Tang, C. S., Cheng, Q., et al., 2022. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 47(10): 3701-3722 (in Chinese with English abstract).
      Tami, D., Rahardjo, H., Leong, E. C., et al., 2004. A Physical Model for Sloping Capillary Barriers. Geotechnical Testing Journal, 27(2): 173-183. https://doi.org/10.1520/gtj11431
      Tang, H. M., Li, C. D., Hu, W., et al., 2022. What is the Physical Mechanism of Landslide Initiation?. Earth Science, 47(10): 3902-3903 (in Chinese with English abstract).
      Wu, Q. H., Zhang, J. F., Cui, H. D., et al., 2017a. Experimental Study of Drainage Control of Slopes with Fine-Coarse Grain Structure. Rock and Soil Mechanics, 38(2): 392-399 (in Chinese with English abstract).
      Wu, Q. H., Zhang, J. F., Wu, J. B., et al., 2017b. Physical Model Tests on Slopes with Control of Infiltration by Unsaturated Drainage Structures. Chinese Journal of Geotechnical Engineering, 39(1): 154-160 (in Chinese with English abstract).
      Zhang, J. F., Liu, X. M., Jiao, J. J., 2009. A Protection Scheme of Double Layers with Drainage Function for Expansive Soil Slopes by Canal. Journal of Yangtze River Scientific Research Institute, 26(11): 37-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb200911009
      邓林恒, 詹良通, 陈云敏, 等, 2012. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究. 岩土工程学报, 34(1): 75-80.
      焦卫国, 詹良通, 季永新, 等, 2019. 含非饱和导排层的毛细阻滞覆盖层长期性能分析. 浙江大学学报(工学版), 53(6): 1101-1109.
      焦卫国, 詹良通, 季永新, 等, 2020. 非饱和导排层水分侧向导排作用模型试验验证与影响因素分析. 长江科学院院报, 37(5): 92-98.
      罗渝, 何思明, 何尽川, 2014. 降雨类型对浅层滑坡稳定性的影响. 地球科学, 39(9): 1357-1363. doi: 10.3799/dqkx.2014.118
      孙畅, 唐朝生, 程青, 等, 2022. 土体‒大气相互作用下土质边坡稳定性研究. 地球科学, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275
      唐辉明, 李长冬, 胡伟, 等, 2022. 重大滑坡启滑的物理机制是什么?. 地球科学, 47(10): 3902-3903.
      吴庆华, 张家发, 崔皓东, 等, 2017a. 细‒粗粒二元结构边坡的排水防渗效果试验研究. 岩土力学, 38(2): 392-399.
      吴庆华, 张家发, 武金博, 等, 2017b. 非饱和导排结构控制降雨入渗的边坡物理模型试验. 岩土工程学报, 39(1): 154-160.
      张家发, 刘晓明, 焦赳赳, 2009. 膨胀土渠坡兼有排水功能的双层结构防护方案. 长江科学院院报, 26(11): 37-41.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(5)

      Article views (201) PDF downloads(24) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return