• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Li Xin, Guo Qinghai, Zhao Qian, 2024. Dissolution of Stibnite and Morphological Distribution of Antimony in Its Products under Different Aqueous Conditions. Earth Science, 49(11): 4022-4034. doi: 10.3799/dqkx.2023.172
    Citation: Li Xin, Guo Qinghai, Zhao Qian, 2024. Dissolution of Stibnite and Morphological Distribution of Antimony in Its Products under Different Aqueous Conditions. Earth Science, 49(11): 4022-4034. doi: 10.3799/dqkx.2023.172

    Dissolution of Stibnite and Morphological Distribution of Antimony in Its Products under Different Aqueous Conditions

    doi: 10.3799/dqkx.2023.172
    • Received Date: 2023-08-28
    • Publish Date: 2024-11-25
    • The dissolution of stibnite (Sb2S3) is an important source of antimony in the aqueous environment, and the toxicity, mobility and bioavailability of dissolved antimony in water are closely related to its morphology, but the current understanding of the morphological distribution of antimony in the dissolution products of stibnite is not consistent, and the understanding of the particular form of antimony, thioantimonate, is particularly controversial. In this context, it systematically investigated the dissolution process of stibnite and its effect on the formation of thioantimonate under different aqueous conditions, to provide a basis for the accurate evaluation of the environmental effects of stibnite dissolution. The results show that the dissolution of stibnite under acidic-weak alkaline conditions does not lead to the formation of thioantimonate, while under alkaline conditions trithioantimonate and tetrathioantimonate can be formed; the dissolution of stibnite is unlikely to lead to the formation of poly-thioantimonate when the initial total antimony content in the reaction system is comparable to that in natural water. In addition, the coexistence of different types of reduced sulfur or moderate amounts of orpiment and an increase in the ionic strength of the water can promote the formation of thioantimonate, which is inhibited by excess orpiment. The S(-Ⅱ)/Sb molar ratio in water is an important factor in controlling the formation of thioantimonate; the S(-Ⅱ)/Sb molar ratio is a key indicator to be considered when examining the environmental impact of stibnite leaching in natural water environments and the potential for thioantimonate formation during leaching.

       

    • loading
    • Andreae, M. O., Asmode, J. F., Foster, P., et al., 1981. Determination of Antimony(Ⅲ), Antimony(Ⅴ), and Methylantimony Species in Natural Waters by Atomic Absorption Spectrometry with Hydride Generation. Analytical Chemistry, 53(12): 1766-1771. https://doi.org/10.1021/ac00235a012
      Andreae, M. O., Froelich, P. N. Jr, 1984. Arsenic, Antimony, and Germanium Biogeochemistry in the Baltic Sea. Tellus B: Chemical and Physical Meteorology, 36(2): 101. https://doi.org/10.3402/tellusb.v36i2.14880
      Baeza, M., Ren, J. H., Krishnamurthy, S., et al., 2010. Spatial Distribution of Antimony and Arsenic Levels in Manadas Creek, an Urban Tributary of the Rio Grande in Laredo, Texas. Archives of Environmental Contamination and Toxicology, 58(2): 299-314. https://doi.org/10.1007/s00244-009-9357-0
      Feng, R. W., Wei, C. Y., Tu, S. X., et al., 2013. The Uptake and Detoxification of Antimony by Plants: A Review. Environmental and Experimental Botany, 96: 28-34. https://doi.org/10.1016/j.envexpbot.2013.08.006
      Filella, M., Belzile, N., Chen, Y. W., 2002. Antimony in the Environment: A Review Focused on Natural Waters Ⅰ. Occurrence. Earth-Science Reviews, 57(1/2): 125-176. https://doi.org/10.1016/S0012-8252(01)00070-8
      Gebel, T., 1997. Arsenic and Antimony: Comparative Approach on Mechanistic Toxicology. Chemico-Biological Interactions, 107(3): 131-144. https://doi.org/10.1016/S0009-2797(97)00087-2
      Guo, Q. H., Planer-Friedrich, B., Luo, L., et al., 2020. Speciation of Antimony in Representative Sulfidic Hot Springs in the YST Geothermal Province (China) and Its Immobilization by Spring Sediments. Environmental Pollution, 266: 115221. https://doi.org/10.1016/j.envpol.2020.115221
      Helz, G. R., Valerio, M. S., Capps, N. E., 2002. Antimony Speciation in Alkaline Sulfide Solutions: Role of Zerovalent Sulfur. Environmental Science & Technology, 36(5): 943-948. https://doi.org/10.1021/es011227c
      Herath, I., Vithanage, M., Bundschuh, J., 2017. Antimony as a Global Dilemma: Geochemistry, Mobility, Fate and Transport. Environmental Pollution, 223: 545-559. https://doi.org/10.1016/j.envpol.2017.01.057
      Kamyshny, A. Jr, Borkenstein, C. G., Ferdelman, T. G., 2009. Protocol for Quantitative Detection of Elemental Sulfur and Polysulfide Zero-Valent Sulfur Distribution in Natural Aquatic Samples. Geostandards and Geoanalytical Research, 33(3): 415-435. https://doi.org/10.1111/j.1751-908x.2009.00907.x
      Krupp, R. E., 1988. Solubility of Stibnite in Hydrogen Sulfide Solutions, Speciation, and Equilibrium Constants, from 25 to 350 ℃. Geochimica et Cosmochimica Acta, 52(12): 3005-3015. https://doi.org/10.1016/0016-7037(88)90164-0
      Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A. D., et al., 2000. A Study of Speciation of Sb in Bisulfide Solutions by X-Ray Absorption Spectroscopy. Applied Geochemistry, 15(6): 879-889. https://doi.org/10.1016/S0883-2927(99)00080-3
      Nakamaru, Y. M., Altansuvd, J., 2014. Speciation and Bioavailability of Selenium and Antimony in Non-Flooded and Wetland Soils: A Review. Chemosphere, 111: 366-371. https://doi.org/10.1016/j.chemosphere.2014.04.024
      Olsen, N. J., Mountain, B. W., Seward, T. M., 2018. Antimony(Ⅲ) Sulfide Complexes in Aqueous Solutions at 30 ℃: A Solubility and XAS Study. Chemical Geology, 476: 233-247. https://doi.org/10.1016/j.chemgeo.2017.11.020
      Pierart, A., Shahid, M., Séjalon-Delmas, N., et al., 2015. Antimony Bioavailability: Knowledge and Research Perspectives for Sustainable Agricultures. Journal of Hazardous Materials, 289: 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011
      Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park:   Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
      Planer-Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k
      Planer-Friedrich, B., Wilson, N., 2012. The Stability of Tetrathioantimonate in the Presence of Oxygen, Light, High Temperature and Arsenic. Chemical Geology, 322: 1-10. https://doi.org/10.1016/j.chemgeo.2012.06.010
      Reimann, C., Matschullat, J., Birke, M., et al., 2010. Antimony in the Environment: Lessons from Geochemical Mapping. Applied Geochemistry, 25(2): 175-198. https://doi.org/10.1016/j.apgeochem.2009.11.011
      Shen, Z. L., 1993. Basis of Hydrogeochemistry. Geological Publishing House, Beijing, 13-14 (in Chinese with English abstract).
      Sherman, D. M., Ragnarsdottir, K. V., Oelkers, E. H., 2000. Antimony Transport in Hydrothermal Solutions: An EXAFS Study of Antimony(Ⅴ) Complexation in Alkaline Sulfide and Sulfide-Chloride Brines at Temperatures from 25 ℃ to 300 ℃ at P Sat. Chemical Geology, 167(1/2): 161-167. https://doi.org/10.1016/S0009-2541(99)00207-7
      Smichowski, P., 2008. Antimony in the Environment as a Global Pollutant: A Review on Analytical Methodologies for Its Determination in Atmospheric Aerosols. Talanta, 75(1): 2-14. https://doi.org/10.1016/j.talanta.2007.11.005
      Song, H. Y., Guo, Q. H., 2023. Morphological Distribution and Geochemical Origin of Antimony in Typical High-Temperature Hot Springs. Earth Science, 48(3): 946-957 (in Chinese with English abstract).
      Tossell, J. A., 1994. The Speciation of Antimony in Sulfidic Solutions: A Theoretical Study. Geochimica et Cosmochimica Acta, 58(23): 5093-5104. https://doi.org/10.1016/0016-7037(94)90296-8
      Tossell, J. A., 2003. Calculation of the Energetics for the Oxidation of Sb(Ⅲ) Sulfides by Elemental S and Polysulfides in Aqueous Solution. Geochimica et Cosmochimica Acta, 67(18): 3347-3354. https://doi.org/10.1016/S0016-7037(03)00129-7
      Tschan, M., Robinson, B. H., Schulin, R., 2009. Antimony in the Soil-Plant System-A Review. Environmental Chemistry, 6(2): 106. https://doi.org/10.1071/en08111
      Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
      Ungureanu, G., Santos, S., Boaventura, R., et al., 2015. Arsenic and Antimony in Water and Wastewater: Overview of Removal Techniques with Special Reference to Latest Advances in Adsorption. Journal of Environmental Management, 151: 326-342. https://doi.org/10.1016/j.jenvman.2014.12.051
      Wilson, N., Webster-Brown, J., 2009. The Fate of Antimony in a Major Lowland River System, the Waikato River, New Zealand. Applied Geochemistry, 24(12): 2283-2292. https://doi.org/10.1016/j.apgeochem.2009.09.016
      Wood, S. A., 1989. Raman Spectroscopic Determination of the Speciation of Ore Metals in Hydrothermal Solutions: Ⅰ. Speciation of Antimony in Alkaline Sulfide Solutions at 25 ℃. Geochimica et Cosmochimica Acta, 53(2): 237-244. https://doi.org/10.1016/0016-7037(89)90376-1
      Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Sulfhydrylation of Arsenic in Tengchong Hot Spring. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
      Yan, L., Chan, T. S., Jing, C. Y., 2020. Mechanistic Study for Stibnite Oxidative Dissolution and Sequestration on Pyrite. Environmental Pollution, 262: 114309. https://doi.org/10.1016/j.envpol.2020.114309
      Ye, L., Jing, C. Y., 2021. Environmental Geochemistry of Thioantimony: Formation, Structure and Transformation as Compared with Thioarsenic. Environmental Science: Processes & Impacts, 23(12): 1863-1872. https://doi.org/10.1039/D1EM00261A
      沈照理, 1993. 水文地球化学基础. 北京: 地质出版社, 13-14.
      宋泓禹, 郭清海, 2023. 典型高温热泉中锑的形态分布及其地球化学成因. 地球科学, 48(3): 946-957.
      严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (281) PDF downloads(26) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return