Citation: | Li Xin, Guo Qinghai, Zhao Qian, 2024. Dissolution of Stibnite and Morphological Distribution of Antimony in Its Products under Different Aqueous Conditions. Earth Science, 49(11): 4022-4034. doi: 10.3799/dqkx.2023.172 |
Andreae, M. O., Asmode, J. F., Foster, P., et al., 1981. Determination of Antimony(Ⅲ), Antimony(Ⅴ), and Methylantimony Species in Natural Waters by Atomic Absorption Spectrometry with Hydride Generation. Analytical Chemistry, 53(12): 1766-1771. https://doi.org/10.1021/ac00235a012
|
Andreae, M. O., Froelich, P. N. Jr, 1984. Arsenic, Antimony, and Germanium Biogeochemistry in the Baltic Sea. Tellus B: Chemical and Physical Meteorology, 36(2): 101. https://doi.org/10.3402/tellusb.v36i2.14880
|
Baeza, M., Ren, J. H., Krishnamurthy, S., et al., 2010. Spatial Distribution of Antimony and Arsenic Levels in Manadas Creek, an Urban Tributary of the Rio Grande in Laredo, Texas. Archives of Environmental Contamination and Toxicology, 58(2): 299-314. https://doi.org/10.1007/s00244-009-9357-0
|
Feng, R. W., Wei, C. Y., Tu, S. X., et al., 2013. The Uptake and Detoxification of Antimony by Plants: A Review. Environmental and Experimental Botany, 96: 28-34. https://doi.org/10.1016/j.envexpbot.2013.08.006
|
Filella, M., Belzile, N., Chen, Y. W., 2002. Antimony in the Environment: A Review Focused on Natural Waters Ⅰ. Occurrence. Earth-Science Reviews, 57(1/2): 125-176. https://doi.org/10.1016/S0012-8252(01)00070-8
|
Gebel, T., 1997. Arsenic and Antimony: Comparative Approach on Mechanistic Toxicology. Chemico-Biological Interactions, 107(3): 131-144. https://doi.org/10.1016/S0009-2797(97)00087-2
|
Guo, Q. H., Planer-Friedrich, B., Luo, L., et al., 2020. Speciation of Antimony in Representative Sulfidic Hot Springs in the YST Geothermal Province (China) and Its Immobilization by Spring Sediments. Environmental Pollution, 266: 115221. https://doi.org/10.1016/j.envpol.2020.115221
|
Helz, G. R., Valerio, M. S., Capps, N. E., 2002. Antimony Speciation in Alkaline Sulfide Solutions: Role of Zerovalent Sulfur. Environmental Science & Technology, 36(5): 943-948. https://doi.org/10.1021/es011227c
|
Herath, I., Vithanage, M., Bundschuh, J., 2017. Antimony as a Global Dilemma: Geochemistry, Mobility, Fate and Transport. Environmental Pollution, 223: 545-559. https://doi.org/10.1016/j.envpol.2017.01.057
|
Kamyshny, A. Jr, Borkenstein, C. G., Ferdelman, T. G., 2009. Protocol for Quantitative Detection of Elemental Sulfur and Polysulfide Zero-Valent Sulfur Distribution in Natural Aquatic Samples. Geostandards and Geoanalytical Research, 33(3): 415-435. https://doi.org/10.1111/j.1751-908x.2009.00907.x
|
Krupp, R. E., 1988. Solubility of Stibnite in Hydrogen Sulfide Solutions, Speciation, and Equilibrium Constants, from 25 to 350 ℃. Geochimica et Cosmochimica Acta, 52(12): 3005-3015. https://doi.org/10.1016/0016-7037(88)90164-0
|
Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A. D., et al., 2000. A Study of Speciation of Sb in Bisulfide Solutions by X-Ray Absorption Spectroscopy. Applied Geochemistry, 15(6): 879-889. https://doi.org/10.1016/S0883-2927(99)00080-3
|
Nakamaru, Y. M., Altansuvd, J., 2014. Speciation and Bioavailability of Selenium and Antimony in Non-Flooded and Wetland Soils: A Review. Chemosphere, 111: 366-371. https://doi.org/10.1016/j.chemosphere.2014.04.024
|
Olsen, N. J., Mountain, B. W., Seward, T. M., 2018. Antimony(Ⅲ) Sulfide Complexes in Aqueous Solutions at 30 ℃: A Solubility and XAS Study. Chemical Geology, 476: 233-247. https://doi.org/10.1016/j.chemgeo.2017.11.020
|
Pierart, A., Shahid, M., Séjalon-Delmas, N., et al., 2015. Antimony Bioavailability: Knowledge and Research Perspectives for Sustainable Agricultures. Journal of Hazardous Materials, 289: 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011
|
Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668
|
Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v
|
Planer-Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k
|
Planer-Friedrich, B., Wilson, N., 2012. The Stability of Tetrathioantimonate in the Presence of Oxygen, Light, High Temperature and Arsenic. Chemical Geology, 322: 1-10. https://doi.org/10.1016/j.chemgeo.2012.06.010
|
Reimann, C., Matschullat, J., Birke, M., et al., 2010. Antimony in the Environment: Lessons from Geochemical Mapping. Applied Geochemistry, 25(2): 175-198. https://doi.org/10.1016/j.apgeochem.2009.11.011
|
Shen, Z. L., 1993. Basis of Hydrogeochemistry. Geological Publishing House, Beijing, 13-14 (in Chinese with English abstract).
|
Sherman, D. M., Ragnarsdottir, K. V., Oelkers, E. H., 2000. Antimony Transport in Hydrothermal Solutions: An EXAFS Study of Antimony(Ⅴ) Complexation in Alkaline Sulfide and Sulfide-Chloride Brines at Temperatures from 25 ℃ to 300 ℃ at P Sat. Chemical Geology, 167(1/2): 161-167. https://doi.org/10.1016/S0009-2541(99)00207-7
|
Smichowski, P., 2008. Antimony in the Environment as a Global Pollutant: A Review on Analytical Methodologies for Its Determination in Atmospheric Aerosols. Talanta, 75(1): 2-14. https://doi.org/10.1016/j.talanta.2007.11.005
|
Song, H. Y., Guo, Q. H., 2023. Morphological Distribution and Geochemical Origin of Antimony in Typical High-Temperature Hot Springs. Earth Science, 48(3): 946-957 (in Chinese with English abstract).
|
Tossell, J. A., 1994. The Speciation of Antimony in Sulfidic Solutions: A Theoretical Study. Geochimica et Cosmochimica Acta, 58(23): 5093-5104. https://doi.org/10.1016/0016-7037(94)90296-8
|
Tossell, J. A., 2003. Calculation of the Energetics for the Oxidation of Sb(Ⅲ) Sulfides by Elemental S and Polysulfides in Aqueous Solution. Geochimica et Cosmochimica Acta, 67(18): 3347-3354. https://doi.org/10.1016/S0016-7037(03)00129-7
|
Tschan, M., Robinson, B. H., Schulin, R., 2009. Antimony in the Soil-Plant System-A Review. Environmental Chemistry, 6(2): 106. https://doi.org/10.1071/en08111
|
Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
|
Ungureanu, G., Santos, S., Boaventura, R., et al., 2015. Arsenic and Antimony in Water and Wastewater: Overview of Removal Techniques with Special Reference to Latest Advances in Adsorption. Journal of Environmental Management, 151: 326-342. https://doi.org/10.1016/j.jenvman.2014.12.051
|
Wilson, N., Webster-Brown, J., 2009. The Fate of Antimony in a Major Lowland River System, the Waikato River, New Zealand. Applied Geochemistry, 24(12): 2283-2292. https://doi.org/10.1016/j.apgeochem.2009.09.016
|
Wood, S. A., 1989. Raman Spectroscopic Determination of the Speciation of Ore Metals in Hydrothermal Solutions: Ⅰ. Speciation of Antimony in Alkaline Sulfide Solutions at 25 ℃. Geochimica et Cosmochimica Acta, 53(2): 237-244. https://doi.org/10.1016/0016-7037(89)90376-1
|
Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Sulfhydrylation of Arsenic in Tengchong Hot Spring. Earth Science, 47(2): 622-632 (in Chinese with English abstract).
|
Yan, L., Chan, T. S., Jing, C. Y., 2020. Mechanistic Study for Stibnite Oxidative Dissolution and Sequestration on Pyrite. Environmental Pollution, 262: 114309. https://doi.org/10.1016/j.envpol.2020.114309
|
Ye, L., Jing, C. Y., 2021. Environmental Geochemistry of Thioantimony: Formation, Structure and Transformation as Compared with Thioarsenic. Environmental Science: Processes & Impacts, 23(12): 1863-1872. https://doi.org/10.1039/D1EM00261A
|
沈照理, 1993. 水文地球化学基础. 北京: 地质出版社, 13-14.
|
宋泓禹, 郭清海, 2023. 典型高温热泉中锑的形态分布及其地球化学成因. 地球科学, 48(3): 946-957.
|
严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632.
|