• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 12
    Dec.  2024
    Turn off MathJax
    Article Contents
    Hou Linli, Wu Song, Yi Jianzhou, Ci Qiong, Chen Lie, Liu Xiaofeng, Wei Shoucai, A Wang Danzeng, Zheng Youye, Liu Peng, 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173
    Citation: Hou Linli, Wu Song, Yi Jianzhou, Ci Qiong, Chen Lie, Liu Xiaofeng, Wei Shoucai, A Wang Danzeng, Zheng Youye, Liu Peng, 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173

    Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning

    doi: 10.3799/dqkx.2023.173
    • Received Date: 2023-06-13
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • In order to study whether chlorite trace elements can effectively classify different genetic deposit types, in this paper, 2 928 trace element data of chlorite from 13 different deposits were collected, which belong to three distinct genetic types, including porphyry, skarn and epithermal deposits.Three different machine learning algorithms, including random forest, support vector machine (SVM) and artificial neural network, were used to establish classification models for the genetic types of deposits and analyze the importance of characteristics.The results show that the SVM model based on Ni, Cr, Co, Sr, V and Zn, 6 trace elements have the best classification effect, the highest Kappa coefficient is 0.89, the weighted average score of precision, recall and F1 value reach 0.96, and Ni, V and Co are the three most critical discriminant elements. In this paper it fully confirms that the machine learning classification model based on chlorite mineral trace elements can discriminate deposit types and provide an important indicator for the rapid evaluation of regional scale prospecting.

       

    • loading
    • Abbaszadeh, M., Hezarkhani, A., Soltani-Mohammadi, S., 2015. Classification of Alteration Zones Based on Whole-Rock Geochemical Data Using Support Vector Machine. Journal of the Geological Society of India, 85(4): 500-508. https://doi.org/10.1007/s12594-015-0242-3
      Bédard, É., De Bronac de Vazelhes, V., Beaudoin, G., 2022. Performance of Predictive Supervised Classification Models of Trace Elements in Magnetite for Mineral Exploration. Journal of Geochemical Exploration, 236: 106959. https://doi.org/10.1016/j.gexplo.2022.106959
      Chu, G. B., Zhang, S. T., Zhang, X. B., et al., 2020. Chlorite Chemistry of Tongshankou Porphyry-Related Cu-Mo-W Skarn Deposit, Eastern China: Implications for Hydrothermal Fluid Evolution and Exploration Vectoring to Concealed Orebodies. Ore Geology Reviews, 122: 103531. https://doi.org/10.1016/j.oregeorev.2020.103531
      Cooke, D. R., Wilkinson, J. J., Baker, M., et al., 2020. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona. Economic Geology, 115(4): 813-840. https://doi.org/10.5382/econgeo.4735
      Emmings, J. F., Poulton, S. W., Walsh, J., et al., 2022. Pyrite Mega-Analysis Reveals Modes of Anoxia through Geological Time. Science Advances, 8(11): eabj5687. https://doi.org/10.1126/sciadv.abj5687
      Fan, Y., Zhang, W., Liu, Y. N., et al., 2021. Geochemical Characteristics of Chlorite in the Luohe Iron Deposit in the Middle-Lower Yangtze Metallogenic Belt, Eastern China. Ore Geology Reviews, 133: 104062. https://doi.org/10.1016/j.oregeorev.2021.104062
      Feng, Y. Z., Chu, G. B., Xiao, B., et al., 2022. Chlorite Mineralogy, Geochemistry and Exploration Implications: a Case Study of the Xiaokelehe Porphyry Cu-Mo Deposit in NE China. Ore Geology Reviews, 140: 104568. https://doi.org/10.1016/j.oregeorev.2021.104568
      Fu, G. M., Lü, Q. T., Yan, J. Y., et al., 2021.3D Mineral Prospectivity Modeling Based on Machine Learning: A Case Study of the Zhuxi Tungsten Deposit in Northeastern Jiangxi Province, South China. Ore Geology Reviews, 67(Suppl. 1): 275-276 (in Chinese with English abstract).
      Guo, P., Yang, T., Xu, W. L., et al., 2021. Machine Learning Reveals Source Compositions of Intraplate Basaltic Rocks. Geochemistry, Geophysics, Geosystems, 22(9): e2021GC009946. https://doi.org/10.1029/2021gc009946
      Han, S., Li, M. C., Ren, Q. B., et al., 2018. Intelligent Determination and Data Mining for Tectonic Settings of Basalts Based on Big Data Methods. Acta Petrologica Sinica, 34(11): 3207-3216(in Chinese with English abstract).
      He, G. H., Zhou, T. F., Fan, Y., et al., 2018. Geochemical Characteristics and Exploration Implications of Chlorite in Shaxi Porphyry Copper Gold Deposit, Lujiang. Mineral Deposits, 37(6): 1247-1259(in Chinese with English abstract).
      Hong, S., Zuo, R. G., Huang, X. W., et al., 2021. Distinguishing IOCG and IOA Deposits via Random Forest Algorithm Based on Magnetite Composition. Journal of Geochemical Exploration, 230: 106859. https://doi.org/10.1016/j.gexplo.2021.106859
      Huang, J. H., Chen, H. Y., Han, J. S., et al., 2018. Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu-Zn Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 100: 263-279. https://doi.org/10.1016/j.oregeorev.2017.02.037
      Jiao, S. T., Zhou, Y. Z., Zhang, Q., et al., 2018. Study on Intelligent Discrimination of Tectonic Settings Based on Global Gabbro Data from GEOROC. Acta Petrologica Sinica, 34(11): 3189-3194(in Chinese with English abstract).
      Li, C. B., Xiao, K. Y., Li, N., et al., 2020. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction. Acta Geoscientica Sinica, 41(2): 309-319(in Chinese with English abstract).
      Li, C. H., Shen, P., Zhao, Y., et al., 2022. Mineral Chemistry of Chlorite in Different Geologic Environments and Its Implications for Porphyry Cu±Au±Mo Deposits. Ore Geology Reviews, 149: 105112. https://doi.org/10.1016/j.oregeorev.2022.105112
      Li, S., Chen, J. P., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
      Liu, B., He, J. R., Geng, Y. J., et al., 2017. Recent Advances in Infrastructure Architecture of Parallel Machine Learning Algorithms. Computer Engineering and Applications, 53(11): 31-38 (in Chinese with English abstract).
      Liu, L., Shen, J. K., Zhang, L. X., et al., 2023. A Machine Learning‐Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779(in Chinese with English abstract).
      Liu, S. Y., Liu, Y. P., Ye, L., et al., 2022. Genetic Mineralogy of Chlorite in the Dulong Sn-Zn Polymetallic Deposit in Maguan, Yunnan Province, China. Acta Mineralogica Sinica, 42(1): 1-13 (in Chinese with English abstract).
      Liu, Y. P., Zhu, L. X., Zhou, Y. Z., 2020. Experimental Research on Big Data Mining and Intelligent Prediction of Prospecting Target Area: Application of Convolutional Neural Network Model. Geotectonica et Metallogenia, 44(2): 192-202(in Chinese with English abstract).
      Mao, M., Rukhlov, A. S., Rowins, S. M., et al., 2016. Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Economic Geology, 111(5): 1187-1222. https://doi.org/10.2113/econgeo.111.5.1187
      Martínez-Serrano, R. G., Dubois, M., 1998. Chemical Variations in Chlorite at the Los Humeros Geothermal System, Mexico. Clays and Clay Minerals, 46(6): 615-628. https://doi.org/10.1346/CCMN.1998.0460602
      Nathwani, C. L., Wilkinson, J. J., Fry, G., et al., 2022. Machine Learning for Geochemical Exploration: Classifying Metallogenic Fertility in Arc Magmas and Insights into Porphyry Copper Deposit Formation. Mineralium Deposita, 57(7): 1143-1166. https://doi.org/10.1007/s00126-021-01086-9
      Pacey, A., Wilkinson, J. J., Cooke, D. R., 2020. Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales, Australia. Economic Geology, 115(4): 701-727. https://doi.org/10.5382/econgeo.4700
      Petrelli, M., Perugini, D., 2016. Solving Petrological Problems through Machine Learning: The Study Case of Tectonic Discrimination Using Geochemical and Isotopic Data. Contributions to Mineralogy and Petrology, 171(10): 81. https://doi.org/10.1007/s00410-016-1292-2
      Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., et al., 2015. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geology Reviews, 71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001
      Rudin, C., 2019. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, 1(5): 206-215. https://doi.org/10.1038/s42256-019-0048-x
      Wang, W., Leng, C. B., Zhang, X. C., 2021. Mineral Chemistry of Chlorite and Epidote in Diyanqinamu Porphyry Mo Deposit of Inner Mongolia and Its Implication for Exploration. Mineral Deposits, 40(2): 241-261(in Chinese with English abstract).
      Wang, Y., Qiu, K. F., Müller, A., et al., 2021. Machine Learning Prediction of Quartz Forming-Environments. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021925. https://doi.org/10.1029/2021jb021925
      Wang, Y. J., Fan, H. H., Pang, Y. Q., et al., 2022. Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication. Minerals, 12(6): 693. https://doi.org/10.3390/min12060693
      Wang, Z. Q., Chen, B., Yan, X., et al., 2018. Characteristics of Hydrothermal Chlorite from the Niujuan Ag-Au-Pb-Zn Deposit in the North Margin of NCC and Implications for Exploration Tools for Ore Deposits. Ore Geology Reviews, 101: 398-412. https://doi.org/10.1016/j.oregeorev.2018.08.003
      Wilkinson, J. J., Baker, M. J., Cooke, D. R., et al., 2020. Exploration Targeting in Porphyry Cu Systems Using Propylitic Mineral Chemistry: A Case Study of the El Teniente Deposit, Chile. Economic Geology, 115(4): 771-791. https://doi.org/10.5382/econgeo.4738
      Wilkinson, J. J., Chang, Z. S., Cooke, D. R., et al., 2015. The Chlorite Proximitor: A New Tool for Detecting Porphyry Ore Deposits. Journal of Geochemical Exploration, 152: 10-26. https://doi.org/10.1016/j.gexplo.2015.01.005
      Xiao, B., Chen, H. Y., 2020. Elemental Behavior during Chlorite Alteration: New Insights from a Combined EMPA and LA-ICPMS Study in Porphyry Cu Systems. Chemical Geology, 543: 119604. https://doi.org/10.1016/j.chemgeo.2020.119604
      Xiao, B., Chen, H. Y., Wang, Y. F., et al., 2018a. Chlorite and Epidote Chemistry of the Yandong Cu Deposit, NW China: Metallogenic and Exploration Implications for Paleozoic Porphyry Cu Systems in the Eastern Tianshan. Ore Geology Reviews, 100: 168-182. https://doi.org/10.1016/j.oregeorev.2017.03.004
      Xiao, B., Chen, H. Y., Hollings, P., et al., 2018b. Element Transport and Enrichment during Propylitic Alteration in Paleozoic Porphyry Cu Mineralization Systems: Insights from Chlorite Chemistry. Ore Geology Reviews, 102: 437-448. https://doi.org/10.1016/j.oregeorev.2018.09.020
      Yang, L., Wei, J., 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023(in Chinese with English abstract).
      Zhang, S. T., Xiao, B., Long, X. P., et al., 2020. Chlorite as an Exploration Indicator for Concealed Skarn Mineralization: Perspective from the Tonglushan Cu-Au-Fe Skarn Deposit, Eastern China. Ore Geology Reviews, 126: 103778. https://doi.org/10.1016/j.oregeorev.2020.103778
      Zhou, Y. Z., Zhang, Z. J., Yang, J., et al., 2022. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential. Natural Resources Research, 31(6): 3061-3078. https://doi.org/10.1007/s11053-022-10122-y
      付光明, 严加永, 罗凡, 等, 2021. 基于随机森林算法的三维成矿预测: 以赣东北朱溪钨矿床外围为例. 地质论评, 67(增刊1): 275-276.
      韩帅, 李明超, 任秋兵, 等, 2018. 基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析. 岩石学报, 34(11): 3207-3216.
      何光辉, 周涛发, 范裕, 等, 2018. 庐江沙溪斑岩型铜金矿床绿泥石的地球化学特征及找矿指示. 矿床地质, 37(6): 1247-1259.
      焦守涛, 周永章, 张旗, 等, 2018. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究. 岩石学报, 34(11): 3189-3194.
      李苍柏, 肖克炎, 李楠, 等, 2020. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究. 地球学报, 41(2): 309-319.
      刘斌, 何进荣, 耿耀君, 等, 2017. 并行机器学习算法基础体系前沿进展综述. 计算机工程与应用, 53(11): 31-38, 89.
      刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779.
      刘仕玉, 刘玉平, 叶霖, 等, 2022. 云南马关都龙锡锌多金属矿床绿泥石成因矿物学. 矿物学报, 42(1): 1-13.
      刘艳鹏, 朱立新, 周永章, 2020. 大数据挖掘与智能预测找矿靶区实验研究: 卷积神经网络模型的应用. 大地构造与成矿学, 44(2): 192-202.
      王帏, 冷成彪, 张兴春, 等, 2021. 内蒙古迪彦钦阿木斑岩钼矿床绿泥石和绿帘石矿物化学特征及其成矿指示意义. 矿床地质, 40(2): 241-261.
      杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
    • dqkxzx-49-12-4303-附表1.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(6)

      Article views (470) PDF downloads(106) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return