Citation: | Hou Linli, Wu Song, Yi Jianzhou, Ci Qiong, Chen Lie, Liu Xiaofeng, Wei Shoucai, A Wang Danzeng, Zheng Youye, Liu Peng, 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173 |
Abbaszadeh, M., Hezarkhani, A., Soltani-Mohammadi, S., 2015. Classification of Alteration Zones Based on Whole-Rock Geochemical Data Using Support Vector Machine. Journal of the Geological Society of India, 85(4): 500-508. https://doi.org/10.1007/s12594-015-0242-3
|
Bédard, É., De Bronac de Vazelhes, V., Beaudoin, G., 2022. Performance of Predictive Supervised Classification Models of Trace Elements in Magnetite for Mineral Exploration. Journal of Geochemical Exploration, 236: 106959. https://doi.org/10.1016/j.gexplo.2022.106959
|
Chu, G. B., Zhang, S. T., Zhang, X. B., et al., 2020. Chlorite Chemistry of Tongshankou Porphyry-Related Cu-Mo-W Skarn Deposit, Eastern China: Implications for Hydrothermal Fluid Evolution and Exploration Vectoring to Concealed Orebodies. Ore Geology Reviews, 122: 103531. https://doi.org/10.1016/j.oregeorev.2020.103531
|
Cooke, D. R., Wilkinson, J. J., Baker, M., et al., 2020. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona. Economic Geology, 115(4): 813-840. https://doi.org/10.5382/econgeo.4735
|
Emmings, J. F., Poulton, S. W., Walsh, J., et al., 2022. Pyrite Mega-Analysis Reveals Modes of Anoxia through Geological Time. Science Advances, 8(11): eabj5687. https://doi.org/10.1126/sciadv.abj5687
|
Fan, Y., Zhang, W., Liu, Y. N., et al., 2021. Geochemical Characteristics of Chlorite in the Luohe Iron Deposit in the Middle-Lower Yangtze Metallogenic Belt, Eastern China. Ore Geology Reviews, 133: 104062. https://doi.org/10.1016/j.oregeorev.2021.104062
|
Feng, Y. Z., Chu, G. B., Xiao, B., et al., 2022. Chlorite Mineralogy, Geochemistry and Exploration Implications: a Case Study of the Xiaokelehe Porphyry Cu-Mo Deposit in NE China. Ore Geology Reviews, 140: 104568. https://doi.org/10.1016/j.oregeorev.2021.104568
|
Fu, G. M., Lü, Q. T., Yan, J. Y., et al., 2021.3D Mineral Prospectivity Modeling Based on Machine Learning: A Case Study of the Zhuxi Tungsten Deposit in Northeastern Jiangxi Province, South China. Ore Geology Reviews, 67(Suppl. 1): 275-276 (in Chinese with English abstract).
|
Guo, P., Yang, T., Xu, W. L., et al., 2021. Machine Learning Reveals Source Compositions of Intraplate Basaltic Rocks. Geochemistry, Geophysics, Geosystems, 22(9): e2021GC009946.
|
Han, S., Li, M. C., Ren, Q. B., et al., 2018. Intelligent Determination and Data Mining for Tectonic Settings of Basalts Based on Big Data Methods. Acta Petrologica Sinica, 34(11): 3207-3216(in Chinese with English abstract).
|
He, G. H., Zhou, T. F., Fan, Y., et al., 2018. Geochemical Characteristics and Exploration Implications of Chlorite in Shaxi Porphyry Copper Gold Deposit, Lujiang. Mineral Deposits, 37(6): 1247-1259(in Chinese with English abstract).
|
Hong, S., Zuo, R. G., Huang, X. W., et al., 2021. Distinguishing IOCG and IOA Deposits via Random Forest Algorithm Based on Magnetite Composition. Journal of Geochemical Exploration, 230: 106859. https://doi.org/10.1016/j.gexplo.2021.106859
|
Huang, J. H., Chen, H. Y., Han, J. S., et al., 2018. Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu-Zn Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 100: 263-279. https://doi.org/10.1016/j.oregeorev.2017.02.037
|
Jiao, S. T., Zhou, Y. Z., Zhang, Q., et al., 2018. Study on Intelligent Discrimination of Tectonic Settings Based on Global Gabbro Data from GEOROC. Acta Petrologica Sinica, 34(11): 3189-3194(in Chinese with English abstract).
|
Li, C. B., Xiao, K. Y., Li, N., et al., 2020. A Comparative Study of Support Vector Machine, Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction. Acta Geoscientica Sinica, 41(2): 309-319(in Chinese with English abstract).
|
Li, C. H., Shen, P., Zhao, Y., et al., 2022. Mineral Chemistry of Chlorite in Different Geologic Environments and Its Implications for Porphyry Cu±Au±Mo Deposits. Ore Geology Reviews, 149: 105112. https://doi.org/10.1016/j.oregeorev.2022.105112
|
Li, S., Chen, J. P., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
|
Liu, B., He, J. R., Geng, Y. J., et al., 2017. Recent Advances in Infrastructure Architecture of Parallel Machine Learning Algorithms. Computer Engineering and Applications, 53(11): 31-38 (in Chinese with English abstract).
|
Liu, L., Shen, J. K., Zhang, L. X., et al., 2023. A Machine Learning‐Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779(in Chinese with English abstract).
|
Liu, S. Y., Liu, Y. P., Ye, L., et al., 2022. Genetic Mineralogy of Chlorite in the Dulong Sn-Zn Polymetallic Deposit in Maguan, Yunnan Province, China. Acta Mineralogica Sinica, 42(1): 1-13 (in Chinese with English abstract).
|
Liu, Y. P., Zhu, L. X., Zhou, Y. Z., 2020. Experimental Research on Big Data Mining and Intelligent Prediction of Prospecting Target Area: Application of Convolutional Neural Network Model. Geotectonica et Metallogenia, 44(2): 192-202(in Chinese with English abstract).
|
Mao, M., Rukhlov, A. S., Rowins, S. M., et al., 2016. Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Economic Geology, 111(5): 1187-1222. https://doi.org/10.2113/econgeo.111.5.1187
|
Martínez-Serrano, R. G., Dubois, M., 1998. Chemical Variations in Chlorite at the Los Humeros Geothermal System, Mexico. Clays and Clay Minerals, 46(6): 615-628. https://doi.org/10.1346/CCMN.1998.0460602
|
Nathwani, C. L., Wilkinson, J. J., Fry, G., et al., 2022. Machine Learning for Geochemical Exploration: Classifying Metallogenic Fertility in Arc Magmas and Insights into Porphyry Copper Deposit Formation. Mineralium Deposita, 57(7): 1143-1166. https://doi.org/10.1007/s00126-021-01086-9
|
Pacey, A., Wilkinson, J. J., Cooke, D. R., 2020. Chlorite and Epidote Mineral Chemistry in Porphyry Ore Systems: A Case Study of the Northparkes District, New South Wales, Australia. Economic Geology, 115(4): 701-727. https://doi.org/10.5382/econgeo.4700
|
Petrelli, M., Perugini, D., 2016. Solving Petrological Problems through Machine Learning: The Study Case of Tectonic Discrimination Using Geochemical and Isotopic Data. Contributions to Mineralogy and Petrology, 171(10): 81. https://doi.org/10.1007/s00410-016-1292-2
|
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., et al., 2015. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geology Reviews, 71: 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001
|
Rudin, C., 2019. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nature Machine Intelligence, 1(5): 206-215. https://doi.org/10.1038/s42256-019-0048-x
|
Wang, W., Leng, C. B., Zhang, X. C., 2021. Mineral Chemistry of Chlorite and Epidote in Diyanqinamu Porphyry Mo Deposit of Inner Mongolia and Its Implication for Exploration. Mineral Deposits, 40(2): 241-261(in Chinese with English abstract).
|
Wang, Y., Qiu, K. F., Müller, A., et al., 2021. Machine Learning Prediction of Quartz Forming-Environments. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021925. https://doi.org/10.1029/2021jb021925
|
Wang, Y. J., Fan, H. H., Pang, Y. Q., et al., 2022. Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication. Minerals, 12(6): 693. https://doi.org/10.3390/min12060693
|
Wang, Z. Q., Chen, B., Yan, X., et al., 2018. Characteristics of Hydrothermal Chlorite from the Niujuan Ag-Au-Pb-Zn Deposit in the North Margin of NCC and Implications for Exploration Tools for Ore Deposits. Ore Geology Reviews, 101: 398-412. https://doi.org/10.1016/j.oregeorev.2018.08.003
|
Wilkinson, J. J., Baker, M. J., Cooke, D. R., et al., 2020. Exploration Targeting in Porphyry Cu Systems Using Propylitic Mineral Chemistry: A Case Study of the El Teniente Deposit, Chile. Economic Geology, 115(4): 771-791. https://doi.org/10.5382/econgeo.4738
|
Wilkinson, J. J., Chang, Z. S., Cooke, D. R., et al., 2015. The Chlorite Proximitor: A New Tool for Detecting Porphyry Ore Deposits. Journal of Geochemical Exploration, 152: 10-26. https://doi.org/10.1016/j.gexplo.2015.01.005
|
Xiao, B., Chen, H. Y., 2020. Elemental Behavior during Chlorite Alteration: New Insights from a Combined EMPA and LA-ICPMS Study in Porphyry Cu Systems. Chemical Geology, 543: 119604. https://doi.org/10.1016/j.chemgeo.2020.119604
|
Xiao, B., Chen, H. Y., Wang, Y. F., et al., 2018a. Chlorite and Epidote Chemistry of the Yandong Cu Deposit, NW China: Metallogenic and Exploration Implications for Paleozoic Porphyry Cu Systems in the Eastern Tianshan. Ore Geology Reviews, 100: 168-182. https://doi.org/10.1016/j.oregeorev.2017.03.004
|
Xiao, B., Chen, H. Y., Hollings, P., et al., 2018b. Element Transport and Enrichment during Propylitic Alteration in Paleozoic Porphyry Cu Mineralization Systems: Insights from Chlorite Chemistry. Ore Geology Reviews, 102: 437-448. https://doi.org/10.1016/j.oregeorev.2018.09.020
|
Yang, L., Wei, J., 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023(in Chinese with English abstract).
|
Zhang, S. T., Xiao, B., Long, X. P., et al., 2020. Chlorite as an Exploration Indicator for Concealed Skarn Mineralization: Perspective from the Tonglushan Cu-Au-Fe Skarn Deposit, Eastern China. Ore Geology Reviews, 126: 103778. https://doi.org/10.1016/j.oregeorev.2020.103778
|
Zhou, Y. Z., Zhang, Z. J., Yang, J., et al., 2022. Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential. Natural Resources Research, 31(6): 3061-3078. https://doi.org/10.1007/s11053-022-10122-y
|
付光明, 严加永, 罗凡, 等, 2021. 基于随机森林算法的三维成矿预测: 以赣东北朱溪钨矿床外围为例. 地质论评, 67(增刊1): 275-276.
|
韩帅, 李明超, 任秋兵, 等, 2018. 基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析. 岩石学报, 34(11): 3207-3216.
|
何光辉, 周涛发, 范裕, 等, 2018. 庐江沙溪斑岩型铜金矿床绿泥石的地球化学特征及找矿指示. 矿床地质, 37(6): 1247-1259.
|
焦守涛, 周永章, 张旗, 等, 2018. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究. 岩石学报, 34(11): 3189-3194.
|
李苍柏, 肖克炎, 李楠, 等, 2020. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究. 地球学报, 41(2): 309-319.
|
刘斌, 何进荣, 耿耀君, 等, 2017. 并行机器学习算法基础体系前沿进展综述. 计算机工程与应用, 53(11): 31-38, 89.
|
刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779.
|
刘仕玉, 刘玉平, 叶霖, 等, 2022. 云南马关都龙锡锌多金属矿床绿泥石成因矿物学. 矿物学报, 42(1): 1-13.
|
刘艳鹏, 朱立新, 周永章, 2020. 大数据挖掘与智能预测找矿靶区实验研究: 卷积神经网络模型的应用. 大地构造与成矿学, 44(2): 192-202.
|
王帏, 冷成彪, 张兴春, 等, 2021. 内蒙古迪彦钦阿木斑岩钼矿床绿泥石和绿帘石矿物化学特征及其成矿指示意义. 矿床地质, 40(2): 241-261.
|
杨玲, 魏静, 2023. 基于支持向量机和增强学习算法的岩爆烈度等级预测. 地球科学, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
|
![]() |
![]() |