• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 4
    Apr.  2024
    Turn off MathJax
    Article Contents
    Dan Kaibo, Zhang Daohan, Luan Yuwei, Song Chongyu, Yu Miao, Liu Changwei, 2024. Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia. Earth Science, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177
    Citation: Dan Kaibo, Zhang Daohan, Luan Yuwei, Song Chongyu, Yu Miao, Liu Changwei, 2024. Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia. Earth Science, 49(4): 1324-1338. doi: 10.3799/dqkx.2023.177

    Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia

    doi: 10.3799/dqkx.2023.177
    • Received Date: 2023-04-05
      Available Online: 2024-04-30
    • Publish Date: 2024-04-25
    • To decipher the petrogenesis of the newly discovered alkaline rhyolite in the Baerzhe giant rare metal deposit in Inner Mongolia, and its genetic relationship with the ore⁃related peralkaline granite and Aliwula alkaline rhyolite from the adjacent area, in this research it carried out high spatial resolution LA-SF-ICP-MS zircon U-Pb dating, mineralogical and whole⁃rock geochemical studies. The results show that the eruption age of the Baerzhe alkaline rhyolite is 124.4±1.6 Ma, which is obviously younger than that of the Aliwula alkaline rhyolite(141 Ma), which represents a new stage of alkaline volcanic activity in the middle-southern section of the Great Xing'an Range during the Early Cretaceous. The Baerzhe and Aliwula alkaline rhyolites have high SiO2, alkali metals, TFe2O3, F and low Al2O3 contents, and belong to comendites. Both are rich in light rare earth elements (LREE) and high field strength elements (HFSE) such as Nb, Ta, Zr, and Hf, and contain high Rb, Th, U and extremely low Ba and Sr contents. In addition, both have the same whole-rock Nd isotopic composition, with εNd(t) values of 1.6 and 1.7-1.8, respectively. Therefore, both Baerzhe and Aliwula alkaline rhyolites are the products of partial melting of the juvenile lower crust. The Baerzhe alkaline rhyolite and ore⁃related peralkaline granite have the same formation age and isotope composition, and are different products of same, evolving magmatic system. Given the wider exposure range of volcanic rocks, alkaline volcanic rocks can be used as an important geological prospecting indicator for the underlying rare metal deposits, and it is pointed out that Aliwula area has a good prospecting potential for such deposits.

       

    • loading
    • Avanzinelli, R., Bindi, L., Menchetti, S., et al., 2004. Crystallisation and Genesis of Peralkaline Magmas from Pantelleria Volcano, Italy: An Integrated Petrological and Crystal-Chemical Study. Lithos, 73(1/2): 41-69. https://doi.org/10.1016/j.lithos.2003.10.007
      Black, S., MacDonald, R., Kelly, M. R., 1997. Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes. Journal of Petrology, 38(2): 277-297. https://doi.org/10.1093/petroj/38.2.277
      Boily, M., Williams-Jones, A. E., 1994. The Role of Magmatic and Hydrothermal Processes in the Chemical Evolution of the Strange Lake Plutonic Complex, Québec-Labrador. Contributions to Mineralogy and Petrology, 118(1): 33-47. https://doi.org/10.1007/BF00310609
      Civetta, L., D'Antonio, M., Orsi, G., et al., 1998. The Geochemistry of Volcanic Rocks from Pantelleria Island, Sicily Channel: Petrogenesis and Characteristics of the Mantle Source Region. Journal of Petrology, 39(8): 1453-1491. https://doi.org/10.1093/petroj/39.8.1453
      Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01-A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103-123. https://doi.org/10.1111/ggr.12307
      Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. https://doi.org/10.1144/GSL.SP.2004.226.01.05
      Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4
      Kovalenko, V. I., Tsaryeva, G. M., Goreglyad, A. V., et al., 1995. The Peralkaline Granite-Related Khaldzan-Buregtey Rare Metal (Zr, Nb, REE) Deposit, Western Mongolia. Economic Geology, 90(3): 530-547. https://doi.org/10.2113/gsecongeo.90.3.530
      Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727(10): 54-60. https://doi.org/10.1016/j.aca.2012.03.040
      Li, J., Tang, S. H., Zhu, X. K., et al., 2017a. Production and Certification of the Reference Material GSB 04-3258-2015 as a 143Nd/144Nd Isotope Ratio Reference. Geostandards and Geoanalytical Research, 41(2): 255-262. https://doi.org/10.1111/ggr.12151
      Li, Y., Xu, W. L., Wang, F., et al., 2017b. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China: Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime. Journal of Asian Earth Sciences, 144: 205-224. https://doi.org/10.1016/j.jseaes.2016.12.005
      Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Amphibole Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 362/363: 105469. https://doi.org/10.1016/j.lithos.2020.105469
      Li, Y., Xu, W. L., Tang, J., et al., 2018. Geochronology and Geochemistry of Mesozoic Intrusive Rocks in the Xing'an Massif of NE China: Implications for the Evolution and Spatial Extent of the Mongol-Okhotsk Tectonic Regime. Lithos, 304/305/306/307: 57-73. https://doi.org/10.1016/j.lithos.2018.02.001
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ma, C., Tang, Y. J., Ying, J. F., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract).
      MacDonald, R., 1974. Nomenclature and Petrochemistry of the Peralkaline Over Saturated Extrusive Rocks. Bulletin of Volcanologique, 38(2): 498-516. https://doi.org/10.1007/BF02596896
      MacDonald, R., Davies, G. R., Bliss, C. M., et al., 1987. Geochemistry of High-Silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28(6): 979-1008. https://doi.org/10.1093/petrology/28.6.979
      Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005
      Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471-483. https://doi.org/10.1016/s0012-821x(97)00048-4
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth—A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Qin, J. H., 2017. The Character and Geological Significance of the Nianzishan Miarolitic Alkaline Granite in Qiqihar City, Heilongjiang Province (Dissertation). China University of Geoscience, Beijing, 14-15(in Chinese with English abstract).
      Qiu, K. F., Yu, H. C., Wu, M. Q., et al., 2019. Discrete Zr and REE Mineralization of the Baerzhe Rare-Metal Deposit, China. American Mineralogist, 104(10): 1487-1502. https://doi.org/10.2138/am-2019-6890
      Qiu, Z. L., Liang, D. Y., Wang, Y. F., et al., 2014. Zircon REE, Trace Element Characteristics and U-Pb Chronology in the Baerzhe Alkaline Granite: Implications to the Petrological Genesis and Mineralization. Acta Petrologica Sinica, 30(6): 1757-1768 (in Chinese with English abstract).
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford.
      Schmitt, A. K., Emmermann, R., Trumbull, R. B., et al., 2000. Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites. Journal of Petrology, 41(8): 1207-1239. https://doi.org/10.1093/petrology/41.8.1207
      Shao, F. L., Niu, Y. L., Regelous, M., et al., 2015. Petrogenesis of Peralkaline Rhyolites in an Intra-Plate Setting: Glass House Mountains, Southeast Queensland, Australia. Lithos, 216/217: 196-210. https://doi.org/10.1016/j.lithos.2014.12.015
      Siegel, K., Williams-Jones, A. E., Stevenson, R., 2017. A Nd- and O-Isotope Study of the REE-Rich Peralkaline Strange Lake Granite: Implications for Mesoproterozoic A-Type Magmatism in the Core Zone (NE-Canada). Contributions to Mineralogy and Petrology, 172(7): 54. https://doi.org/10.1007/s00410-017-1373-x
      Su, H. M., Jiang, S. Y., Zhu, X. Y., et al., 2021. Magmatic-Hydrothermal Processes and Controls on Rare-Metal Enrichment of the Baerzhe Peralkaline Granitic Pluton, Inner Mongolia, Northeastern China. Ore Geology Reviews, 131: 103984. https://doi.org/10.1016/j.oregeorev.2021.103984
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, Y., Lai, Y., Chen, J., et al., 2013. Rare Earth and Rare Metal Elements Mobility and Mineralization during Magmatic and Fluid Evolution in Alkaline Granite System: Evidence from Fluid and Melt Inclusions in Baerzhe Granite, China. Resource Geology, 63(3): 239-261. https://doi.org/10.1111/rge.12007
      Tang, J., Xu, W. L., Wang, F., et al., 2022. Temporal Variations in the Geochemistry of Mesozoic Mafic-Intermediate Volcanic Rocks in the Northern Great Xing'an Range, Northeast China, and Implications for Deep Lithospheric Mantle Processes. Lithos, 422/423: 106721. https://doi.org/10.1016/j.lithos.2022.106721
      Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Scientia Sinica (Terrae), 48(5): 549-583 (in Chinese).
      Vasyukova, O. V., Williams-Jones, A. E., 2020. Partial Melting, Fractional Crystallisation, Liquid Immiscibility and Hydrothermal Mobilisation—A 'Recipe' for the Formation of Economic A-Type Granite-Hosted HFSE Deposits. Lithos, 356/357: 105300. https://doi.org/10.1016/j.lithos.2019.105300
      Wang, J. G., 2014. Petrogenesis and Mineralization Implication of the Alkali-Rhyolites in Keyouzhongqi, the Southern Da Hinggan MTS., China (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Wang, J. G., He, Z. Y., Xu, W. L., 2013. Petrogenesis of Riebeckite Rhyolites in the Southern Great Hinggan Mts. : Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863 (in Chinese with English abstract).
      Wang, Y. X., Zhao, Z. H., 1997. Geochemistry and Origin of the Baerzhe REE Nb-Be-Zr Superlarge Deposit. Geochimica, 26(1): 25-26, 28, 30-36 (in Chinese with English abstract).
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006GC001283
      White, J. C., Parker, D. F., Ren, M. H., 2009. The Origin of Trachyte and Pantellerite from Pantelleria, Italy: Insights from Major Element, Trace Element, and Thermodynamic Modelling. Journal of Volcanology and Geothermal Research, 179(1/2): 33-55. https://doi.org/10.1016/j.jvolgeores.2008.10.007
      Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003a. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0
      Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003b. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. https://doi.org/10.1016/S0024-4937(03)00015-X
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, M. Q., Samson, I. M., Qiu, K. F., et al., 2021. Concentration Mechanisms of Rare Earth Element-Nb-Zr-Be Mineralization in the Baerzhe Deposit, Northeast China: Insights from Textural and Chemical Features of Amphibole and Rare Metal Minerals. Economic Geology, 116(3): 651-679. https://doi.org/10.5382/econgeo.4789
      Wu, S. T., Yang, M., Yang, Y. H., et al., 2020. Improved In Situ Zircon U-Pb Dating at High Spatial Resolution (5-16 Mm) by Laser Ablation-Single Collector-Sector Field-ICP-MS Using Jet Sample and X Skimmer Cones. International Journal of Mass Spectrometry, 456: 116394. https://doi.org/10.1016/j.ijms.2020.116394
      Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
      Xu, W. L., Sun, C. Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract).
      Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract).
      Yang, W. B., Niu, H. C., Hollings, P., et al., 2017. The Role of Recycled Oceanic Crust in the Generation of Alkaline A-Type Granites. Journal of Geophysical Research (Solid Earth), 122(12): 9775-9783. https://doi.org/10.1002/2017JB014921
      Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358/359: 105411. https://doi.org/10.1016/j.lithos.2020.105411
      Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1
      Yang, W. B., Niu, H. C., Sun, W. D., et al., 2013. Isotopic Evidence for Continental Ice Sheet in Mid-Latitude Region in the Supergreenhouse Early Cretaceous. Scientific Reports, 3: 2732. https://doi.org/10.1038/srep02732
      Yang, W. B., Niu, H. C., Shan, Q., et al., 2009. Ore-Forming Mechanism of the Baerzhe Super-Large Rare and Rare Earth Elements Deposit. Acta Petrologica Sinica, 25(11): 2924-2932(in Chinese with English abstract).
      Yang, W. B., Su, W. C., Liao, S. P., et al., 2011a. Melt and Melt-Fluid Inclusions in the Baerzhe Alkaline Granite: Information of the Magmatic-Hydrothermal Transition. Acta Petrologica Sinica, 27(5): 1493-1499(in Chinese with English abstract).
      Yang, W. B., Shan, Q., Zhao, Z. H., et al., 2011b. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6): 1689-1704(in Chinese with English abstract).
      Yang, Y. J., Yang, X. P., Jiang, B., et al., 2022. Spatio-Temporal Distribution of Mesozoic Volcanic Strata in the Great Xing'an Range: Response to the Subduction of the Mongol-Okhotsk Ocean and Paleo-Pacific Ocean. Earth Science Frontiers, 29(2): 115-131(in Chinese with English abstract).
      Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3/4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013
      Zhang, M., 2011. Study on the Metallogenic System of Copper-Polymetallic Deposits in the Middle-Southern Part of Da Hinggan Mountains, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
      秦锦华, 2017. 黑龙江齐齐哈尔碾子山晶洞碱性花岗岩体特征及其地质意义(硕士学位论文). 北京: 中国地质大学(北京), 14-15. https://cdmd.cnki.com.cn/Article/CDMD-11415-1017136523.htm
      丘志力, 梁冬云, 王艳芬, 等, 2014. 巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示. 岩石学报, 30(6): 1757-1768. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406017.htm
      唐杰, 许文良, 王枫, 等, 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录. 中国科学: 地球科学, 48(5): 549-583. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805004.htm
      王建国, 2014. 大兴安岭南部科右中旗碱性流纹岩的岩石成因及成矿意义(博士学位论文). 长春: 吉林大学.
      王建国, 和钟铧, 徐文良, 2013. 大兴安岭南部碱性流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202308012.htm
      王一先, 赵振华, 1997. 巴尔哲超大型稀土铌铍锆矿床地球化学和成因. 地球化学, 26(1): 25-26, 28, 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX701.002.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm
      杨武斌, 牛贺才, 单强, 等, 2009. 巴尔哲超大型稀有稀土矿床成矿机制研究. 岩石学报, 25(11): 2924-2932. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911023.htm
      杨武斌, 苏文超, 廖思平, 等, 2011a. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息. 岩石学报, 27(5): 1493-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105022.htm
      杨雅军, 杨晓平, 江斌, 等, 2022. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应. 地学前缘, 29(2): 115-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202202008.htm
      张梅, 2011. 大兴安岭中南段铜多金属矿床成矿系统研究(博士学位论文). 北京: 中国地质大学(北京).
    • dqkxzx-49-4-1324-附表1-4.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (111) PDF downloads(12) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return