• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Zhang Yuchen, Rong Hui, Jiao Yangquan, Cao Minqiang, Li Qingchun, Guo Liangliang, Guo Changqi, Zhou Mingwang, 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
    Citation: Zhang Yuchen, Rong Hui, Jiao Yangquan, Cao Minqiang, Li Qingchun, Guo Liangliang, Guo Changqi, Zhou Mingwang, 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181

    Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit

    doi: 10.3799/dqkx.2023.181
    • Received Date: 2023-04-12
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • Fe-Ti oxides are extremely sensitive to changes in the redox environment and are extremely important indicator minerals for studying the mineralization of sandstone-type uranium deposits. However, there are few quantitative data constraints on morphology, contents and compositions of Fe-Ti oxides in the interlayer oxidation zone of sandstone-type uranium deposits. Therefore, in this study it focuses on illustrating Fe-Ti oxides in the interlayer oxidation zone of Qianjiadian uranium deposit in Songliao basin. Six types of Fe-Ti oxides including ilmenite, titanohematite, titanomagnetite, leucoxene, rutile and anatase have been identified by polarizing microscope, SEM and electron probe microanalyzer. The titanohematite and titanomagnetite mainly occur in the strong oxidised subzone and weak oxidised subzone; the leucoxene, anatase and titanium magnetite are mainly distributed in the faint oxidised subzone; the leucoxene and anatase are primarily formed in the transition zone, and the rutile, ilmenite and leucoxene are frequently found in the reduction zone. Seven alteration sequences are identified according to the interspersed wrapping relationship between Fe-Ti oxides in each zone. Four alteration sequences composed of ilmenite →titanomagnetite→magnetite, ilmenite→titanohematite, leucoxene→ titanomagnetite → magnetite and leucoxene → titanohematite are mainly found in the strong oxidised subzone, weak oxidised subzone and faint oxidised subzone, and these sequences record a large-scale interlayer oxidation event. Two alteration sequences including leucoxene → anatase and rutile → anatase primarily occur in the transition zone, these sequences reveal that the deposit was transformed by low-temperature hydrothermal fluids. The last alteration sequence is ilmenite→anatase which mainly occur in the reduction zone, and this sequence reflects a weakly acidic-weakly alkaline environment during diagenesis. The research provides a foundation for the studying Fe-Ti oxides as indicator minerals to study fine zoning of interlayer oxidation zones and mineralization process of sandstone-type uranium deposits.

       

    • loading
    • Anand, R. R., Gilkes, R. J., 1984. Weathering of Ilmenite in a Lateritic Pallid Zone. Clays and Clay Minerals, 32(5): 363-374. https://doi.org/10.1346/ccmn.1984.0320504
      Boulesteix, T., Cathelineau, M., Deloule, E., et al., 2019. Ilmenites and Their Alteration Products, Sinkholes for Uranium and Radium in Roll-Front Deposits after the Example of South Tortkuduk (Kazakhstan). Journal of Geochemical Exploration, 206: 106343. https://doi.org/10.1016/j.gexplo.2019.106343
      Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
      Bonnetti, C., Liu, X. D., Yan, Z. B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129. https://doi.org/10.1016/j.oregeorev.2016.11.013
      Cai, G. Q., Huang, Z. Z., Li, S. X., 2006. Alteration Mineral Assemblages in Interlayer Oxidation Zone of the Shihongtan In-Situ Leachable Sandstone-Type Uranium Deposit. Acta Geologica Sinica, 80(1): 119-125, 173(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.013
      Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466(in Chinese with English abstract).
      Chen, F. H., Zhang, M. Y., Lin, C. S., 2005. Sedimentary Environments and Uranium Enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin, Nei Mongol. Sedimentary Geology and Tethyan Geology, 25(3): 74-79(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2005.03.012
      Chen, L. L., Chen, Y., Guo, H., et al., 2022. Characteristics of Altered Ilmenite in Uranium-Bearing Sandstone and Its Relationship with Uranium Minerals in the Northeastern Ordos Basin. Journal of Earth Science, 33(2): 342-357. https://doi.org/10.1007/s12583-021-1468-1
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2006. Distribution Characteristics of Interlayer Oxidation Zone and Its Relationship with Sedimentary Facies and Uranium Mineralization in QJD Uranium Deposit, Songliao Basin, NE China. World Nuclear Geoscience, 23(3): 137-144(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2006.03.003
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2007. Lithofacies Characteristics of Ore-Hosting Horizon and Its Relationship to Uranium Mineralization in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 23(6): 335-341, 355(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.003
      Chen, X. L., Fang, X. H., Guo, Q. Y., et al., 2008a. Re-Disscussion on Uranium Metallogenesis in Qianjiadian Sag, Songliao Basin. Acta Geologica Sinica, 82(4): 553-561(in Chinese with English abstract).
      Chen, X. L., Guo, Q. Y., Fang, X. H., et al., 2008b. Discussion on the Differences between Epigenetic Oxidized and Primary Red Beds. World Nuclear Geoscience, 25(4): 187-194(in Chinese with English abstract).
      Cheng, Y. H., Wang, S. Y., Zhang, T. F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105. https://doi.org/10.1016/j.gr.2020.08.002
      Deng, L. M., Ge, X. K., Liu, Z. Y., et al., 2021. The Occurrence and Mineral Composition of Uranium Ore of DL Mineralized Zone in Southwestern Songliao Basin. Uranium Geology, 37(2): 192-204(in Chinese with English abstract).
      Ding, B., Liu, H. X., Zhang, B., et al., 2020. Study on Ilmenite Alteration and Its Process of Uranium Enrichment in Sandstone-Type Uranium Deposits in Northern Ordos Basin. Geological Review, 66(2): 467-474(in Chinese with English abstract).
      Ding, X., He, J. J., Liu, Z. Y., 2018. Experimental Studies on Crystal Growth of Anatase under Hydrothermal Conditions. Earth Science, 43(5): 1763-1772(in Chinese with English abstract).
      Force, E. R., 2001. Magnetic Ilmenite-Hematite Detritus in Mesozoic-Tertiary Placer and Sandstone-Hosted Uranium Deposits of the Rocky Mountains. Economic Geology, 96(6): 1445-1453. https://doi.org/10.2113/96.6.1445
      Frost, M. T., Grey, I. E., Harrowfield, I. R., et al., 1983. The Dependence of Alumina and Silica Contents on the Extent of Alteration of Weathered Ilmenites from Western Australia. Mineralogical Magazine, 47(343): 201-208. https://doi.org/10.1180/minmag.1983.047.343.10
      Fuchs, S., Schumann, D., Williams-Jones, A. E., et al., 2015. The Growth and Concentration of Uranium and Titanium Minerals in Hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393: 55-66. https://doi.org/10.1016/j.chemgeo.2014.11.018
      Gao, Y. Y., Yu, B. L., Yu, W. B., et al., 2008. Analysis on Uranium Metallogenic Conditions and Ore-Controlling Factors of Qianjiadian-Jiamatu Area, Southwest of Songliao Basin. World Nuclear Geoscience, 25(3): 150-156(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2008.03.005
      Grey, I. E., Reid, A. F., 1975. The Structure of Pseudorutile and Its Role in the Natural Alteration of Ilmenite. American Mineralogist, 60: 898-906.
      Granger, H. C., Warren, C. G., 1979. The Importance of Dissolved Free Oxygen during Formation of Sandstone Type Uranium Deposits. Open-File Report. United States Department of the Interior Geological Survey, U. S. A., 79-1603, 1-19.
      Hall, S. M., Mihalasky, M. J., Tureck, K. R., et al., 2017. Genetic and Grade and Tonnage Models for Sandstone-Hosted Roll-Type Uranium Deposits, Texas Coastal Plain, USA. Ore Geology Reviews, 80: 716-753. https://doi.org/10.1016/j.oregeorev.2016.06.013
      He, J. J., Ding, X., Wang, Y. R., et al., 2015. The Effect of Temperature and Concentration on Hydrolysis of Fluorinerich Titanium Complexes in Hydrothermal Fluids: Constraints on Titanium Mobility in Deep Geological Processes. Acta Petrologica Sinica, 31(3): 802-810(in Chinese with English abstract).
      Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2018. Occurrence of Carbonate Cements and Relationship between Carbonate Cementation and Uranium Mineraization of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 43(2): 149-161(in Chinese with English abstract).
      Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2020. Mineralogy and Geochemistry of Carbonate Cement in Sandstone and Implications for Mineralization of the Qianjiadian Sandstone-Hosted Uranium Deposit, Southern Songliao Basin, China. Ore Geology Reviews, 123: 103590. https://doi.org/10.1016/j.oregeorev.2020.103590
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602(in Chinese with English abstract).
      Lehmann, B., 2008. Uranium Ore Deposits. Economic Geology, 2: 16-26. https://doi.org/10.13140/rg.2.1.2870.8723
      Li, P., Wang, J. J., Peng, T., et al., 2019. Heterostructure of Anatase-Rutile Aggregates Boosting the Photoreduction of U(Ⅵ). Applied Surface Science, 483: 670-676. https://doi.org/10.1016/j.apsusc.2019.03.330
      Li, X. D., Liu, J. G., Yi, C., 2017. The Genesis of Uranium Ore with Red Alterations in the Nalinggou Deposit, Northeastern Ordos Basin, and Its Geological Implications. Geological Bulletin of China, 36(4): 511-519(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.04.003
      Liu, H. B., Jin, G. S., Han, J., et al., 2021. Element and Isotope Geochemical Characteristics of Diabase in Qianjiadian Uranium Deposit. World Nuclear Geoscience, 38(2): 135-143(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2021.02.001
      Luo, Y., He, Z. B., Ma, H. F., et al., 2012. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Mineral Deposits, 31(2): 391-400(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.018
      Luo, Y., Ma, H. F., Xia, Y. L., et al., 2007. Geologic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Uranium Geology, 23(4): 193-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.04.001
      Morad, S., Aldahan, A. A., 1986. Alteration of Detrital Fe-Ti Oxides in Sedimentary Rocks. Geological Society of America Bulletin, 97(5): 567. https://doi.org/10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2 doi: 10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2
      Pownceby, M. I., 2010. Alteration and Associated Impurity Element Enrichment in Detrital Ilmenites from the Murray Basin, Southeast Australia: A Product of Multistage Alteration. Australian Journal of Earth Sciences, 57(2): 243-258. https://doi.org/10.1080/08120090903521705
      Pang, Y. Q., Chen, X. L., Fang, X. H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.01.002
      Reynolds, R. L., Goldhaber, M. B., 1978. Origin of a South Texas Roll-Type Uranium Deposit; I, Alteration of Iron-Titanium Oxide Minerals. Economic Geology, 73(8): 1677-1689. https://doi.org/10.2113/gsecongeo.73.8.1677
      Reynolds, R. L., Goldhaber, M. B., 1983. Iron Disulfide Minerals and the Genesis of Roll-Type Uranium Deposits. Economic Geology, 78(1): 105-120. https://doi.org/10.2113/gsecongeo.78.1.105
      Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336
      Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract).
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Temple, A. K., 1966. Alteration of Ilmenite. Economic Geology, 61: 695-714. https://doi.org/10.2113/gsecongeo.55.5.1064
      Teufer, G., Temple, A. K., 1966. Pseudorutile: A New Mineral Intermediate between Ilmenite and Rutile in the N Alteration of Ilmenite. Nature, 211: 179-181. https://doi.org/10.1038/211179b0
      Wang, W. G., 2015. The Discover of Brannerite and Uraninite in Lower Cambrian U-Bearing Phosphorite in West Hunan. Uranium Geology, 31(1): 19-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2015.01.002
      Wang, Y., Hu, B. Q., Sun, Z. X., et al., 2010. Occurring Characteristic and Genesis of Brannerite at Zoujiashan Uranium Deposits, Xiangshan Ore Field. Uranium Geology, 26(6): 344-349(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.06.004
      Wei, J. L., Tang, C., Jin, R. S., et al., 2019. A Study of the Relationship between the Fe-Ti Oxide and Sandstone-Hosted Uranium Mineralization in Longhupao Area, Northern Songliao Basin. Acta Petrologica et Mineralogica, 38(3): 375-389(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2019.03.007
      Wort, M. J., Jones, M. P., 1980. X-Ray Diffraction and Magnetic Studies of Altered Ilmenite and Pseudorutile. Mineralogical Magazine, 43(329): 659-663. https://doi.org/10.1180/minmag.1980.043.329.16
      Xia, F. Y., Jiao, Y. Q., Rong, H., et al., 2019. Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 44(12): 4235-4251(in Chinese with English abstract).
      Xia, Y. L., 2015. Tracing the Metallization of In-Situ Leachable Sandstone Type Uranium Deposit with U-Pb Isotopes. Acta Geologica Sinica, 89(Suppl. 1): 69-70(in Chinese).
      Xia, Y. L., Lin, J. R., Li, Z. Y., et al., 2003. Perspective and Resource Evaluation and Metallogenic Studies on Sandstone-Type Uranium Deposit in Qianjiadian Depression of Songliao Basin. China Nuclear Science and Technology Report, (3): 105-117(in Chinese with English abstract).
      Xia, Y. L., Zheng, J. W., Li, Z. Y., et al., 2010. Metallogenic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Mineral Deposits, 29(Suppl. 1): 154-155(in Chinese).
      Yan, X. L., 2018. Characteristics and Uranium Mineralization of Upper Cretaceous Diabase in Qianjiadian Area, Songliao Basin. Journal of Northeast Petroleum University, 42(1): 40-48, 123-124(in Chinese with English abstract) doi: 10.3969/j.issn.2095-4107.2018.01.005
      Yang, S. Y., Jiang, S. Y., Mao, Q., et al., 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(1): 186-200. https://doi.org/10.46770/as.2021.912
      Yang, S. Y., Zhang, R. X., Jiang, S. Y., et al., 2018. Electron Probe Microanalysis of Variable Oxidation State Oxides: Protocol and Pitfalls. Geostandards and Geoanalytical Research, 42(1): 131-137. https://doi.org/10.1111/ggr.12199
      Yin, J. H., Zhang, H., Zan, G. J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 82-89(in Chinese with English abstract).
      Zhang, M. Y., Zheng, J. W., Tian, S. F., et al., 2005. Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression. Uranium Geology, 21(4): 213-218(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2005.04.005
      Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/s143192761601182x
      Zhao, L., Cai, C. F., Jin, R. S., et al., 2018. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-Related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geology Reviews, 101: 273-292. https://doi.org/10.1016/j.oregeorev.2018.07.025
      Zhao, Y. M., Li, D. X., Han, J. Y., et al., 2008. Mineralogical Characteristics of Anatase, Rutile and Ilmenite in Yangtizashan-Moshishan Titanium Ore Deposit, Inner Mongolia. Mineral Deposits, 27(4): 466-473(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2008.04.004
      蔡根庆, 黄志章, 李胜祥, 2006. 十红滩地浸砂岩铀矿层间氧化带蚀变矿物群. 地质学报, 80(1): 119-125, 173. doi: 10.3321/j.issn:0001-5717.2006.01.013
      曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375
      陈方鸿, 张明瑜, 林畅松, 2005. 开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义. 沉积与特提斯地质, 25(3): 74-79. doi: 10.3969/j.issn.1009-3850.2005.03.012
      陈晓林, 方锡珩, 郭庆银, 等, 2008a. 对松辽盆地钱家店凹陷铀成矿作用的重新认识. 地质学报, 82(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804013.htm
      陈晓林, 郭庆银, 方锡珩, 等, 2008b. 试论后生氧化红层与原生红层的区别. 世界核地质科学, 25(4): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200804003.htm
      陈晓林, 向伟东, 李田港, 等, 2006. 松辽盆地QJD铀矿床层间氧化带的展布特征及其与沉积相、铀成矿的关系. 世界核地质科学, 23(3): 137-144. doi: 10.3969/j.issn.1672-0636.2006.03.003
      陈晓林, 向伟东, 李田港, 等, 2007. 松辽盆地钱家店铀矿床含矿层位的岩相特征及其与铀成矿的关系. 铀矿地质, 23(6): 335-341, 355. doi: 10.3969/j.issn.1000-0658.2007.06.003
      邓刘敏, 葛祥坤, 刘章月, 等, 2021. 松辽盆地西南部DL铀矿带铀赋存状态及矿物组成特征. 铀矿地质, 37(2): 192-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102006.htm
      丁波, 刘红旭, 张宾, 等, 2020. 鄂尔多斯盆地北缘砂岩型铀矿含矿砂岩中钛铁矿蚀变及其聚铀过程探讨. 地质论评, 66(2): 467-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002018.htm
      丁兴, 何俊杰, 刘灼瑜, 2018. 热液条件下锐钛矿晶体生长的实验. 地球科学, 43(5): 1763-1772. doi: 10.3799/dqkx.2018.428
      高玉友, 禹宝利, 于文斌, 等, 2008. 松辽盆地西南部钱家店—架玛吐地区姚家组铀成矿条件及控矿因素分析. 世界核地质科学, 25(3): 150-156. doi: 10.3969/j.issn.1672-0636.2008.03.005
      何俊杰, 丁兴, 王玉荣, 等, 2015. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约. 岩石学报, 31(3): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503014.htm
      贾俊民, 荣辉, 焦养泉, 等, 2018. 松辽盆地钱家店铀矿床中碳酸盐胶结物赋存状态及其与铀成矿关系. 地球科学, 43(增刊2): 149-161. doi: 10.3799/dqkx.2018.115
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
      李西得, 刘军港, 易超, 2017. 鄂尔多斯盆地北东部纳岭沟铀矿床红色蚀变矿石成因及其地质意义. 地质通报, 36(4): 511-519. doi: 10.3969/j.issn.1671-2552.2017.04.003
      刘汉彬, 金贵善, 韩娟, 等, 2021. 钱家店铀矿床辉绿岩元素及同位素地球化学特征. 世界核地质科学, 38(2): 135-143. doi: 10.3969/j.issn.1672-0636.2021.02.001
      罗毅, 马汉峰, 夏毓亮, 等, 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式. 铀矿地质, 23(4): 193-200. doi: 10.3969/j.issn.1000-0658.2007.04.001
      罗毅, 何中波, 马汉峰, 等, 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018
      庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23. doi: 10.3969/j.issn.1000-0658.2010.01.002
      荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      王文广, 2015. 湘西下寒武统含铀磷块岩中钛铀矿和晶质铀矿的发现及其成因分析. 铀矿地质, 31(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201501003.htm
      王运, 胡宝群, 孙占学, 等, 2010. 相山铀矿田邹家山矿床钛铀矿赋存特征及成因. 铀矿地质, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004
      魏佳林, 汤超, 金若时, 等, 2019. 松辽盆地北部龙虎泡地区铁钛氧化物与砂岩型铀矿化关系探讨. 岩石矿物学杂志, 38(3): 375-389. doi: 10.3969/j.issn.1000-6524.2019.03.007
      夏飞勇, 焦养泉, 荣辉, 等, 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义. 地球科学, 44(12): 4235-4251. doi: 10.3799/dqkx.2019.045
      夏毓亮, 2015. U-Pb同位素示踪地浸砂岩型铀矿成矿作用. 地质学报, 89(增刊1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1030.htm
      夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200303008.htm
      夏毓亮, 郑纪伟, 李子颖, 等, 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(增刊1): 154-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1082.htm
      颜新林, 2018. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用. 东北石油大学学报, 42(1): 40-48, 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201801006.htm
      殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200004012.htm
      张明瑜, 郑纪伟, 田时丰, 等, 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200504004.htm
      赵一鸣, 李大新, 韩景仪, 等, 2008. 内蒙古羊蹄子山-磨石山钛矿床锐钛矿、金红石和钛铁矿的矿物学特征. 矿床地质, 27(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200804003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (486) PDF downloads(63) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return