Citation: | Zhang Anguang, Liang Ying, Ma Rui, 2024. Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation. Earth Science, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188 |
Beeckman, F., Motte, H., Beeckman, T., 2018. Nitrification in Agricultural Soils: Impact, Actors and Mitigation. Current Opinion in Biotechnology, 50: 166-173. https://doi.org/10.1016/j.copbio.2018.01.014
|
Böhlke, J. K., Smith, R. L., Miller, D. N., 2006. Ammonium Transport and Reaction in Contaminated Groundwater: Application of Isotope Tracers and Isotope Fractionation Studies. Water Resources Research, 42(5): W05411. https://doi.org/10.1029/2005wr004349
|
Chen, Y. X., Su, X. S., Wan, Y. Y., et al., 2022. Nitrogen Biogeochemical Reactions during Bank Filtration Constrained by Hydrogeochemical and Isotopic Evidence: A Case Study in a Riverbank Filtration Site along the Second Songhua River, NE China. Applied Geochemistry, 140: 105272. https://doi.org/10.1016/j.apgeochem.2022.105272
|
Choi, A., Cho, H., Kim, S. H., et al., 2016. Rates of N2 Production and Diversity and Abundance of Functional Genes Associated with Denitrification and Anaerobic Ammonium Oxidation in the Sediment of the Amundsen Sea Polynya, Antarctica. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 123: 113-125. https://doi.org/10.1016/j.dsr2.2015.07.016
|
Covatti, G., Grischek, T., 2021. Sources and Behavior of Ammonium during Riverbank Filtration. Water Research, 191: 116788. https://doi.org/10.1016/j.watres.2020.116788
|
Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
|
Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
|
He, T. X., Xie, D. T., Ni, J. P., et al., 2020. Nitrous Oxide Produced Directly from Ammonium, Nitrate and Nitrite during Nitrification and Denitrification. Journal of Hazardous Materials, 388: 122114. https://doi.org/10.1016/j.jhazmat.2020.122114
|
Hu, Y. L., Sun, Z. Y., Ma, R., 2023. Springs Emerging along the Elevation Gradient Indicate Intensive Groundwater-Surface Water Exchange in an Alpine Headwater Catchment, Northwestern China. Journal of Earth Science, 34(1): 181-193. https://doi.org/10.1007/s12583-021-1548-2
|
Huang, J. Y., Kankanamge, N. R., Chow, C., et al., 2018. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. Journal of Environmental Sciences, 63: 174–197. https://doi.org/10.1016/j.jes.2017.09.009
|
Jellali, S., Diamantopoulos, E., Kallali, H., et al., 2010. Dynamic Sorption of Ammonium by Sandy Soil in Fixed Bed Columns: Evaluation of Equilibrium and Non-Equilibrium Transport Processes. Journal of Environmental Management, 91(4): 897-905. https://doi.org/10.1016/j.jenvman.2009.11.006
|
Jiang, Q. H., Jin, G. Q., Tang, H. W., et al., 2022. Ammonium (NH4+) Transport Processes in the Riverbank under Varying Hydrologic Conditions. The Science of the Total Environment, 826: 154097. https://doi.org/10.1016/j.scitotenv.2022.154097
|
Kopprio, G. A., Dutto, M. S., Garzón Cardona, J. E., et al., 2018. Biogeochemical Markers across a Pollution Gradient in a Patagonian Estuary: A Multidimensional Approach of Fatty Acids and Stable Isotopes. Marine Pollution Bulletin, 137: 617–626. https://doi.org/10.1016/j.marpolbul.2018.10.059
|
Liang, Y., Ma, R., Nghiem, A., et al., 2022. Sources of Ammonium Enriched in Groundwater in the Central Yangtze River Basin: Anthropogenic or Geogenic? Environmental Pollution, 306: 119463. https://doi.org/10.1016/j.envpol.2022.119463
|
Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
|
Liu, Y. Y., Liu, C. X., Nelson, W. C., et al., 2017. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environmental Science & Technology, 51(9): 4877-4886. https://doi.org/10.1021/acs.est.6b05018
|
Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
|
Mazloomi, F., Jalali, M., 2019. Effects of Vermiculite, Nanoclay and Zeolite on Ammonium Transport through Saturated Sandy Loam Soil: Column Experiments and Modeling Approaches. CATENA, 176: 170-180. https://doi.org/10.1016/j.catena.2019.01.014
|
Nakagawa, K., Amano, H., Takao, Y. J., et al., 2017. On the Use of Coprostanol to Identify Source of Nitrate Pollution in Groundwater. Journal of Hydrology, 550: 663-668. https://doi.org/10.1016/j.jhydrol.2017.05.038
|
Naranjo, R. C., Niswonger, R. G., Davis, C. J., 2015. Mixing Effects on Nitrogen and Oxygen Concentrations and the Relationship to Mean Residence Time in a Hyporheic Zone of a Riffle-Pool Sequence. Water Resources Research, 51(9): 7202-7217. https://doi.org/10.1002/2014wr016593
|
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In Chapter 43 of Section A: Groundwater in Book 6 Modeling Techniques. U. S. Geological Survey.
|
Prommer, H., Tuxen, N., Bjerg, P. L., 2006. Fringe-Controlled Natural Attenuation of Phenoxy Acids in a Landfill Plume: Integration of Field-Scale Processes by Reactive Transport Modeling. Environmental Science & Technology, 40(15): 4732-4738. https://doi.org/10.1021/es0603002
|
Schaefer, M. V., Ying, S. C., Benner, S. G., et al., 2016. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 50(7): 3521-3529. https://doi.org/10.1021/acs.est.5b04986
|
Smith, R. L., Böhlke, J. K., Song, B., et al., 2015. Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer. Environmental Science & Technology, 49(20): 12169-12177. https://doi.org/10.1021/acs.est.5b02488
|
Song, T., Zhang, X. L., Li, J., et al., 2021. A Review of Research Progress of Heterotrophic Nitrification and Aerobic Denitrification Microorganisms (HNADMs). The Science of the Total Environment, 801: 149319. https://doi.org/10.1016/j.scitotenv.2021.149319
|
Sun, L. Q., Liang, X., Jin, M. G., et al., 2022. Sources and Fate of Excessive Ammonium in the Quaternary Sediments on the Dongting Plain, China. The Science of the Total Environment, 806(Pt 1): 150479. https://doi.org/10.1016/j.scitotenv.2021.150479
|
Wang, J. L., Chu, L. B., 2016. Biological Nitrate Removal from Water and Wastewater by Solid-Phase Denitrification Process. Biotechnology Advances, 34(6): 1103-1112. https://doi.org/10.1016/j.biotechadv.2016.07.001
|
Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246
|
Wu, Q. H., Zheng, C. M., Zhang, J. F., et al., 2017. Nitrate Removal by a Permeable Reactive Barrier of FeO: A Model-Based Evaluation. Journal of Earth Science, 28(3): 447-456. https://doi.org/10.1007/s12583-016-0924-2
|
Wu, X. C., Ma, T., Wang, Y. X., 2020. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 31(5): 1016-1028. https://doi.org/10.1007/s12583-020-1333-7
|
Xiong, Y. J., Du, Y., Deng, Y. M., et al., 2021. Contrasting Sources and Fate of Nitrogen Compounds in Different Groundwater Systems in the Central Yangtze River Basin. Environmental Pollution, 290: 118119. https://doi.org/10.1016/j.envpol.2021.118119
|
Xu, J., Liang, Y., Zhang, Z. C., et al., 2023. Effects of Seasonal Variation in Organic Matter in Groundwater on Reactive Nitrogen Transport in the Jianghan Plain. Bulletin of Geological Science and Technology, 42(4): 228-240, 298(in Chinese with English abstract).
|
Yan, A. L., Guo, X. Y., Hu, D. H., et al., 2022. Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water, 14(8): 1237. https://doi.org/10.3390/w14081237
|
Yan, A. L., Liu, C. X., Liu, Y. Y., et al., 2018. Effect of Ion Exchange on the Rate of Aerobic Microbial Oxidation of Ammonium in Hyporheic Zone Sediments. Environmental Science and Pollution Research, 25(9): 8880-8887. https://doi.org/10.1007/s11356-018-1217-x
|
Yu, Q., Zhang, Y., Dong, T., et al., 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431(in Chinese with English abstract).
|
Zhang, Y. T., Wu, J. H., Xu, B., 2018. Human Health Risk Assessment of Groundwater Nitrogen Pollution in Jinghui Canal Irrigation Area of the Loess Region, Northwest China. Environmental Earth Sciences, 77(7): 273. https://doi.org/10.1007/s12665-018-7456-9
|
Zhang, Z. C., Liang, Y., Xu, J., et al., 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439.
|
马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
|
许洁, 梁莹, 张振超, 等, 2023. 江汉平原地下水中有机质季节变化对氮反应迁移的影响. 地质科技通报, 42(4): 228-240, 298.
|
余倩, 张宇, 董听, 等, 2023. 地表水-地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
|
张振超, 梁莹, 许洁, 等, 2024. 高砷地下水中氮循环对砷释放过程的影响. 地球科学, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
|