• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 4
    Apr.  2025
    Turn off MathJax
    Article Contents
    Gao Zhenpeng, Xiao Chunyan, Chen Hao, Xue Tian, Cao Ying, Fan Hekai, Zhang Dong, 2025. Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas. Earth Science, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201
    Citation: Gao Zhenpeng, Xiao Chunyan, Chen Hao, Xue Tian, Cao Ying, Fan Hekai, Zhang Dong, 2025. Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas. Earth Science, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201

    Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas

    doi: 10.3799/dqkx.2023.201
    • Received Date: 2023-07-21
      Available Online: 2025-05-10
    • Publish Date: 2025-04-25
    • In the backdrop of global climate change, the quest for effective methods to sequester atmospheric carbon dioxide (CO2) is both urgent and indispensable. The acidifying substances generated by artificial inputs such as manure and chemical fertilizers in agricultural areas release more dissolved inorganic carbon (DIC) into shallow groundwater, altering the process of inorganic carbon cycling. However, the influence of heavy rain events on this process remains unclear. Shallow groundwater in a vegetable cultivation area in North Henan Province was selected as the primary research focus, while shallow groundwater samples from grain growing region and local deep groundwater samples were also collected in April and October 2021. The water chemistry composition, hydrogen and oxygen isotope compositions (δDH2O and δ18OH2O), and δ13CDIC compositions were analyzed to investigate the influence of rainfall processes on inorganic carbon cycling in shallow groundwater of agricultural areas. The results show that heavy rainfall led to more anthropogenic pollutants entering groundwater under the vegetable cultivation areas during the rainy season, resulting in an increase in mean TDS values from 649 mg/L in April to 1 195 mg/L in October, and a decrease in average δ13CDIC values from -12.25‰ to -14.14‰. The changes of mean TDS values and δ13CDIC values in groundwater under the vegetable cultivation areas were larger than those in groundwater under other sites, displaying more organic matter had entered and decomposed in the shallow groundwater under the vegetable cultivation areas. The average DIC concentrations varied little from 7.78 mmol/L in April to 7.74 mmol/L in October, however, as groundwater table elevated about 11 to 15 m after heavy rainfall, it implied more DIC input and thereby obviously increased carbon sink capacity in shallow groundwater. This study confirms the impact of anthropogenic inputs in vegetable cultivation areas on DIC in shallow groundwater and verifies that heavy rainfall will transport more DIC into shallow groundwater and increasing more dissolved components, elevating carbon sink capability of groundwater.

       

    • loading
    • Brunet, F., Potot, C., Probst, A., et al., 2011. Stable Carbon Isotope Evidence for Nitrogenous Fertilizer Impact on Carbonate Weathering in a Small Agricultural Watershed. Rapid Communications in Mass Spectrometry, 25(19): 2682-2690. https://doi.org/10.1002/rcm.5050
      Chen, Y. Y., Feng, W. T., Kong, L., et al., 2019. Effects of Land Use on Soil Inorganic Carbon in an Inland Basin. Chinese Journal of Ecology, 38(10): 3042-3049(in Chinese with English abstract).
      Dansgaard, W. F., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Eshel, G., Fine, P., Singer, M. J., 2007. Total Soil Carbon and Water Quality: An Implication for Carbon Sequestration. Soil Science Society of America Journal, 71(2): 397-405. https://doi.org/10.2136/sssaj2006.0061
      Fonyuy, E. W., Atekwana, E. A., 2008. Dissolved Inorganic Carbon Evolution and Stable Carbon Isotope Fractionation in Acid Mine Drainage Contaminated Streams: Insights from a Laboratory Study. Applied Geochemistry, 23(9): 2634-2648. https://doi.org/10.1016/j.apgeochem.2008.05.012
      Gerzabek, M. H., Haberhauer, G., Kirchmann, H., 2001. Soil Organic Matter Pools and Carbon-13 Natural Abundances in Particle-Size Fractions of a Long-Term Agricultural Field Experiment Receiving Organic Amendments. Soil Science Society of America Journal, 65(2): 352-358. https://doi.org/10.2136/sssaj2001.652352x
      Gong, F. Y., Wu, R. C., Zhan, R. B., et al., 2017. Upper Ordovician Carbon Isotope Chemostratigraphy in Shitai, Anhui Province. Journal of Stratigraphy, 41(4): 401-410(in Chinese with English abstract).
      Houghton, R. A., Davidson, E. A., Woodwell, G. M., 1998. Missing Sinks, Feedbacks, and Understanding the Role of Terrestrial Ecosystems in the Global Carbon Balance. Global Biogeochemical Cycles, 12(1): 25-34. https://doi.org/10.1029/97GB02729
      Hua, K., Xiao, J., Li, S. J., et al., 2020. Analysis of Hydrochemical Characteristics and Their Controlling Factors in the Fen River of China. Sustainable Cities and Society, 52: 101827. https://doi.org/10.1016/j.scs.2019.101827
      Huang, Q. B., Qin, X. Q., Liu, P. Y., et al., 2017. Impact of Sulfuric and Nitric Acids on Carbonate Dissolution, and the Associated Deficit of CO2 Uptake in the Upper-Middle Reaches of the Wujiang River, China. Journal of Contaminant Hydrology, 203: 18-27. https://doi.org/10.1016/j.jconhyd.2017.05.006
      Jeong, Y. J., Park, H. J., Jeon, B. J., et al., 2022. Land Use Types with Different Fertilization Management Affected Isotope Ratios of Bulk and Water-Extractable C and N of Soils in an Intensive Agricultural Area. Journal of Soils and Sediments, 22(2): 429-442. https://doi.org/10.1007/s11368-021-03097-5
      Jiang, H., 2004. Integrated Digitization Evaluation of Environmental Quality of Groundwater in the Bo'ai County Plain Area in Henan Province. Hydrogeology and Engineering Geology, 31(3): 46-50(in Chinese with English abstract).
      Jiang, Y. J., 2013. The Contribution of Human Activities to Dissolved Inorganic Carbon Fluxes in a Karst Underground River System: Evidence from Major Elements and δ13CDIC in Nandong, Southwest China. Journal of Contaminant Hydrology, 152: 1-11. https://doi.org/10.1016/j.jconhyd.2013.05.010
      Lapenis, A. G., Lawrence, G. B., Bailey, S. W., et al., 2008. Climatically Driven Loss of Calcium in Steppe Soil as a Sink for Atmospheric Carbon. Global Biogeochemical Cycles, 22(2): GB2010. https://doi.org/10.1029/2007GB003077
      Li, S. L., Liu, C. Q., Li, J., et al., 2010. Geochemistry of Dissolved Inorganic Carbon and Carbonate Weathering in a Small Typical Karstic Catchment of Southwest China: Isotopic and Chemical Constraints. Chemical Geology, 277(3/4): 301-309. https://doi.org/10.1016/j.chemgeo.2010.08.013
      Li, S. L., Liu, C. Q., Tao, F. X., et al., 2004. Chemical and Stable Carbon Isotopic Compositions of the Ground Waters of Guiyang City, China: Implications for Biogeochemical Cycle of Carbon and Contamination. Geochimica, 33(2): 165-170(in Chinese with English abstract).
      Li, T. T., Ji, H. B., Jiang, Y. B., et al., 2007. Hydro-Geochemistry and the Sources of DIC in the Upriver Tributaries of the Ganjiang River. Acta Geographica Sinica, 62(7): 764-775(in Chinese with English abstract).
      Li, Y., Liu, Y. H., Wang, X. Y., et al., 2022. Spatial-Temporal Characteristics of PM2.5 and PM10 and Their Relationships with Meteorological Factors in Jiaozuo, Henan. Environmental Engineering, 40(9): 44-53(in Chinese with English abstract).
      Liu, C. R., Fan, D. J., Wei, Y. Q., et al., 2022. Research on Evaluation, Exploitation and Utilization of Shallow Groundwater Resources of Jiaozuo City. Journal of Yellow River Conservancy Technical Institute, 34(2): 1-6, 17(in Chinese with English abstract).
      Liu, J. K., Han, G. L., 2020. Effects of Chemical Weathering and CO2 Outgassing on δ13C DIC Signals in a Karst Watershed. Journal of Hydrology, 589: 125192. https://doi.org/10.1016/j.jhydrol.2020.125192
      Liu, X., Xiang, W., Si, B. C., 2021. Hydrochemical and Isotopic Characteristics in the Shallow Groundwater of the Fenhe River Basin and Indicative Significance. Huan Jing Ke Xue, 42(4): 1739-1749. https://doi.org/10.13227/j.hjkx.202008315
      Maher, D. T., Santos, I. R., Golsby-Smith, L., et al., 2013. Groundwater-Derived Dissolved Inorganic and Organic Carbon Exports from a Mangrove Tidal Creek: The Missing Mangrove Carbon Sink? Limnology and Oceanography, 58(2): 475-488. https://doi.org/10.4319/lo.2013.58.2.0475
      Monger, H. C., Kraimer, R. A., Khresat, S., et al., 2015. Sequestration of Inorganic Carbon in Soil and Groundwater. Geology, 43(5): 375-378. https://doi.org/10.1130/g36449.1
      Pei, J. G., Tao, Y. L., Tong, C. S., 1993. Environmental Isotope of Natural Water and Its Application in Karst Hydrogeology in Jiaozuo Area. Carsologica Sinica, 12(1): 48-56 (in Chinese with English abstract).
      Piao, S. L., Fang, J. Y., Ciais, P., et al., 2009. The Carbon Balance of Terrestrial Ecosystems in China. Nature, 458(7241): 1009-1013. https://doi.org/10.1038/nature07944
      Qu, S., Shi, Z. M., Liang, X. Y., et al., 2022. Hydrochemical Characteristics and Evolution of Groundwater in Multilayer Aquifer System in the Dahaize Coalfield. Environmental Chemistry, 41(8): 2614-2624(in Chinese with English abstract).
      Raza, M., Lee, J. Y., 2019. Factors Affecting Spatial Pattern of Groundwater Hydrochemical Variables and Nitrate in Agricultural Region of Korea. Episodes, 42(2): 135-148. https://doi.org/10.18814/epiiugs/2019/019011
      Shin, W. J., Chung, G. S., Lee, D., et al., 2011. Dissolved Inorganic Carbon Export from Carbonate and Silicate Catchments Estimated from Carbonate Chemistry and δ13CDIC. Hydrology and Earth System Sciences, 15(8): 2551-2560. https://doi.org/10.5194/hess-15-2551-2011
      Shin, W. J., Ryu, J. S., Lee, K. S., et al., 2015. Identification of Anthropogenic Contaminant Sources in Urbanized Streams Using Multiple Isotopes. Environmental Earth Sciences, 73(12): 8311-8324. https://doi.org/10.1007/s12665-014-3992-0
      Sun, C. C., Wu, X. J., Zhang, C. S., et al., 2007. Study on the Present Situation and Countermeasures of Water Resources Utilization in Boai County. Henan Water Resources & South-to-North Water Diversion, 36(9): 33, 67 (in Chinese with English abstract).
      Xie, Y. C., Huang, F., Yang, H., et al., 2021. Role of Anthropogenic Sulfuric and Nitric Acids in Carbonate Weathering and Associated Carbon Sink Budget in a Karst Catchment (Guohua), Southwestern China. Journal of Hydrology, 599(3): 126287. https://doi.org/10.1016/j.jhydrol.2021.126287
      Xu, S., Li, S. L., Su, J., et al., 2021. Oxidation of Pyrite and Reducing Nitrogen Fertilizer Enhanced the Carbon Cycle by Driving Terrestrial Chemical Weathering. Science of the Total Environment, 768(3-4): 144343. https://doi.org/10.1016/j.scitotenv.2020.144343
      Xuan, Y. X., Cao, Y. J., Tang, C. Y., et al., 2020. Changes in Dissolved Inorganic Carbon in River Water Due to Urbanization Revealed by Hydrochemistry and Carbon Isotope in the Pearl River Delta, China. Environmental Science and Pollution Research International, 27(19): 24542-24557. https://doi.org/10.1007/s11356-020-08454-4
      Yan, X. Z., Li, W., Zhao, H. J., et al., 2007. Survy of Agroclimatic Resources and Change Characters in Jiaozuo. Meteorological and Environmental Sciences, 30(2): 68-71 (in Chinese with English abstract).
      Yang, F., Huang, J. P., Zhou, C. L., et al., 2020. Taklimakan Desert Carbon-Sink Decreases under Climate Change. Science Bulletin, 65(6): 431-433. https://doi.org/10.1016/j.scib.2019.12.022
      Yang, Y., Yin, G. X., Zhu, L. X., 2009. Fluorine Pollution and Its Formation Analysis of the Shallow Groundwater in Jiaozuo City. Environmental Science and Management, 34(10): 68-72 (in Chinese with English abstract).
      Yuan, H. Y., Yang, S. Q., Ding, X. H., et al., 2019. Evolution Characteristics of Nutrients and Chemical Compositions of Groundwater before and after Autumn Irrigation: Taking Wulate Irrigation Area as an Example. Environmental Chemistry, 38(10): 2336-2347 (in Chinese with English abstract).
      Yue, F. J., Li, S. L., Liu, C. Q., et al., 2015. Sources and Transport of Nitrate Constrained by the Isotopic Technique in a Karst Catchment: An Example from Southwest China. Hydrological Processes, 29(8): 1883-1893. https://doi.org/10.1002/hyp.10302
      Zhang, D., Liu, C. Q., Wang, F. S., et al., 2015. Inorganic Carbon Cycling in Subsurface Environment Influenced by Agricultural Activities. China Environmental Science, 35(11): 3359-3370 (in Chinese with English abstract).
      Zhang, D., Xue, T., Qin, Y., et al., 2023. Dissolved Ion Concentrations and Isotope Values in Agricultural Fertilizer Locally Applied in Henan Province. Environmental Science, 44(2): 1040-1050(in Chinese with English abstract).
      Zhang, Y. Z., Jiang, Y. J., Yuan, D. X., et al., 2020. Source and Flux of Anthropogenically Enhanced Dissolved Inorganic Carbon: A Comparative Study of Urban and Forest Karst Catchments in Southwest China. Science of the Total Environment, 725: 138255. https://doi.org/10.1016/j.scitotenv.2020.138255
      Zhang, Y. H., Liu, F., Zhong, S., 2021. Research Progress on Soil Inorganic Carbon. Hubei Agricultural Sciences, 60(10): 5-9, 14(in Chinese with English abstract).
      Zhao, M., Zeng, C., Liu, Z. H., et al., 2010. Effect of Different Land Use/Land Cover on Karst Hydrogeochemistry: A Paired Catchment Study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. Journal of Hydrology, 388(1/2): 121-130. https://doi.org/10.1016/j.jhydrol.2010.04.034
      Zou, X. G., Yang, Y., Xu, G., et al., 2018. Chemical Characteristics of Surface Spring in the Rehabilitation Area of Karst Rock Desertification: A Case Study at Laoquan in the Pepper Planting Base of Ganxi Town, Youyang County, Chongqing City, China. Earth and Environment, 46(6): 524-533(in Chinese with English abstract).
      陈园园, 冯文婷, 孔璐, 等, 2019. 内陆河流域土地利用对土壤无机碳的影响. 生态学杂志, 38(10): 3042-3049.
      龚方怡, 吴荣昌, 詹仁斌, 等, 2017. 安徽石台上奥陶统稳定碳同位素地层研究及其意义. 地层学杂志, 41(4): 401-410.
      蒋辉, 2004. 河南省博爱县平原区地下水环境质量数字化综合评价. 水文地质工程地质, 31(3): 46-50.
      李思亮, 刘丛强, 陶发祥, 等, 2004. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用. 地球化学, 33(2): 165-170. doi: 10.19700/j.0379-1726.2004.02.008
      李甜甜, 季宏兵, 江用彬, 等, 2007. 赣江上游河流水化学的影响因素及DIC来源. 地理学报, 62(7): 764-775.
      李杨, 刘永和, 王西岳, 等, 2022. 焦作市PM2.5和PM10时空变化特征及其与气象因子的关系. 环境工程, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
      刘翠然, 樊德军, 魏艳卿, 等, 2022. 焦作市浅层地下水资源评价与开发利用研究. 黄河水利职业技术学院学报, 34(2): 1-6, 17.
      裴建国, 陶友良, 童长水, 1993. 焦作地区天然水环境同位素组成及其在岩溶水文地质中的应用. 中国岩溶, 12(1): 48-56.
      屈伸, 史浙明, 梁向阳, 等, 2022. 大海则井田多层含水层系统水化学特征及演化规律. 环境化学, 41(8): 2614-2624.
      孙长才, 毋先进, 张苍松, 等, 2007. 博爱县水资源利用现状及对策研究. 河南水利与南水北调, 36(9): 33, 67.
      闫小珍, 李伟, 赵海军, 等, 2007. 焦作市农业气候资源及变化特点. 气象与环境科学, 30(2): 68-71. doi: 10.16765/j.cnki.1673-7148.2007.02.017
      杨英, 尹国勋, 朱利霞, 2009. 焦作市浅层地下水氟污染及成因分析. 环境科学与管理, 34(10): 68-72.
      袁宏颖, 杨树青, 丁雪华, 等, 2019. 秋浇前后地下水营养盐与水化学演变特征: 以乌拉特灌域为例. 环境化学, 38(10): 2336-2347.
      张东, 刘丛强, 汪福顺, 等, 2015. 农业活动干扰下地下水无机碳循环过程研究. 中国环境科学, 35(11): 3359-3370.
      张东, 薛天, 秦勇, 等, 2023. 河南省部分市售农用化肥中溶解性离子浓度及同位素组成. 环境科学, 44(2): 1040-1050. doi: 10.13227/j.hjkx.202201251
      张永红, 刘飞, 钟松, 2021. 土壤无机碳研究进展. 湖北农业科学, 60(10): 5-9, 14.
      邹晓岗, 杨琰, 徐刚, 等, 2018. 岩溶槽谷石漠化治理区表层泉水化学特征研究: 以重庆酉阳泔溪花椒基地老泉为例. 地球与环境, 46(6): 524-533.
    • dqkxzx-50-4-1545-附图1.zip
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (75) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return