• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Lin Jie, Wang Zhaofan, Zhang Yunzhong, 2024. Spatial Distribution Characteristics of Stable Isotopes in River Water in Hainan Island: Implication for Water Vapor Delivery Path. Earth Science, 49(12): 4622-4634. doi: 10.3799/dqkx.2023.204
    Citation: Lin Jie, Wang Zhaofan, Zhang Yunzhong, 2024. Spatial Distribution Characteristics of Stable Isotopes in River Water in Hainan Island: Implication for Water Vapor Delivery Path. Earth Science, 49(12): 4622-4634. doi: 10.3799/dqkx.2023.204

    Spatial Distribution Characteristics of Stable Isotopes in River Water in Hainan Island: Implication for Water Vapor Delivery Path

    doi: 10.3799/dqkx.2023.204
    • Received Date: 2023-08-15
      Available Online: 2025-01-09
    • Publish Date: 2024-12-25
    • The water cycle in the tropical regions is the important driving force for the evolution of the global climate system, and Hainan Province is the only tropical island province in China, which is an ideal area for the study of tropical water vapor cycle. Hydrogen and oxygen stable isotopes in water are important method for water cycle research. In this study, the transport path and source of water vapor in Hainan Island are studied through the spatial distribution of stable isotopes of major rivers in Hainan Island. The isotopes of the river water of Hainan Island are gradually positive from west to east in the latitude direction, and are symmetrically distributed in the longitude direction. The isotopes of the southeastern river of Hainan Island show the "altitude effect", while the isotopes of the Changhua River in southwestern Hainan Island show the "anti-altitude effect". The spatial distribution of river water isotopes in Hainan Island shows that topography is the most important factor controlling the spatial distribution of river water isotopes, and the eastern part of Hainan Island is the windward slope of water vapor transport, while the west is in the "rain shadow area", and water vapor is transported from east to west.

       

    • Acharya, S., Yang, X. X., Yao, T. D., et al., 2020. Stable Isotopes of Precipitation in Nepal Himalaya Highlight the Topographic Influence on Moisture Transport. Quaternary International, 565: 22-30. https://doi.org/10.1016/j.quaint.2020.09.052
      Chen, J. S., Wang, Z., 1993. A Study on Stable Isotopes of Hydrogen and Oxygen in Rain Water, River Water and Groundwater from Hainan Island of China. Scientia Geographica Sinica, 13(3): 273-278, 296(in Chinese with English abstract).
      Chen, X. M., Gan, Y. Q., Liu, Y. D., et al., 2011. Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes in the Mainstream of Yangtze River. Geological Science and Technology Information, 30(5): 110-114(in Chinese with English abstract).
      Cockerton, H. E., Street-Perrott, F. A., Leng, M. J., et al., 2013. Stable-Isotope (H, O, and Si) Evidence for Seasonal Variations in Hydrology and Si Cycling from Modern Waters in the Nile Basin: Implications for Interpreting the Quaternary Record. Quaternary Science Reviews, 66: 4-21. https://doi.org/10.1016/j.quascirev.2012.12.005
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Esquivel-Hernández, G., Mosquera, G. M., Sánchez-Murillo, R., et al., 2019. Moisture Transport and Seasonal Variations in the Stable Isotopic Composition of Rainfall in Central American and Andean Páramo during El Niño Conditions (2015—2016). Hydrological Processes, 33(13): 1802-1817. https://doi.org/10.1002/hyp.13438
      Feng, F., Li, Z. Q., Jin, S., et al., 2013. Characteristics of δ18O and δD in Precipitation and Its Water Vapor Sources in the Upper Urumqi River Basin, Eastern Tianshan. Advances in Water Science, 24(5): 634-641(in Chinese with English abstract).
      Guo, E. H., Wang, D. X., Chen, L., 1982. Relationship between Precipitation and Monsoon in Hainan Island. Tropical Geography, 2(1): 15-20, 64(in Chinese with English abstract).
      Jian, Z. M., Jin, H. Y., 2008. Ocean Carbon Cycle and Tropical Forcing of Climate Evolution. Advances in Earth Science, 23(3): 221-227(in Chinese with English abstract).
      Li, G. C., Gao, S., Dai, C., 2016. Geomorphological Evolution of Major Catchment Basins of Hainan Island, Southern China. Quaternary Sciences, 36(1): 121-130(in Chinese with English abstract).
      Li, Z. X., Zhang, B. J., Feng, Q., et al., 2023. A Review of Isotope Ecohydrology in the Cold Regions of Western China. Earth Science, 48(3): 1156-1178(in Chinese with English abstract).
      Liu, X. C., Zhao, J. J., Zhang, H. Y., et al., 2015. Accuracy Validation and Application of TRMM Precipitation Data in Northeast China. Journal of Natural Resources, 30(6): 1047-1056(in Chinese with English abstract).
      Liu, J. Q., Yin, P., Gao, F., et al., 2018. Water H-O Isotopic Characteristics of Nandu River Estuary and Their Response to Typhoon "Kalmaegi". Marine Geology & Quaternary Geology, 38(1): 170-177(in Chinese with English abstract).
      Luo, T., Wang, Y. Q., Li, L. P., 2020. Characteristics of Typhoon Rainfall Affecting Hainan Island and Its Water Vapor Sources. Journal of Meteorology and Environment, 36(6): 42-49(in Chinese with English abstract).
      Mao, L. F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493(in Chinese with English abstract).
      Miljević, N., Golobočanin, D., Ogrinc, N., et al., 2008. Distribution of Stable Isotopes in Surface Water along the Danube River in Serbia. Isotopes in Environmental and Health Studies, 44(2): 137-148. https://doi.org/10.1080/10256010802066141
      Peng, J. C., Zheng, X., Wu, W. H., 2022. Surface and Subsurface Chemical Weathering in Tropical Hainan Island: Implications for Global Carbon Cycle and Seawater Sr Isotope Evolution. Geological Journal of China Universities, 28(6): 849-860(in Chinese with English abstract).
      Peng, T. R., Liu, K. K., Wang, C. H., et al., 2011. A Water Isotope Approach to Assessing Moisture Recycling in the Island-Based Precipitation of Taiwan: A Case Study in the Western Pacific. Water Resources Research, 47. https://doi.org/10.1029/2010wr009890
      Peng, T. R., Wang, C. H., Huang, C. C., et al., 2010. Stable Isotopic Characteristic of Taiwan's Precipitation: A Case Study of Western Pacific Monsoon Region. Earth and Planetary Science Letters, 289(3-4): 357-366. https://doi.org/10.1016/j.epsl.2009.11.024
      Ramesh, R., Sarin, M. M., 1992. Stable Isotope Study of the Ganga (Ganges) River System. Journal of Hydrology, 139(1-4): 49-62. https://doi.org/10.1016/0022-1694(92)90194-z
      Rangarajan, R., Laskar, A. H., Bhattacharya, S. K., et al., 2017. An Insight into the Western Pacific Wintertime Moisture Sources Using Dual Water Vapor Isotopes. Journal of Hydrology, 547: 111-123. https://doi.org/10.1016/j.jhydrol.2017.01.047
      Shi, R., Cai, Q. B., Dong, L. Y., et al., 2019. Response of the Diurnal Cycle of Summer Rainfall to Large-Scale Circulation and Coastal Upwelling at Hainan, South China. Journal of Geophysical Research: Atmospheres, 124(7): 3702-3725. https://doi.org/10.1029/2018jd029528
      Tian, L. D., Yao, T. D., White, J. W. C., et al., 2005. Westerly Moisture Transport to the Middle of Himalayas Revealed from the High Deuterium Excess. Chinese Science Bulletin, 50(10): 1026-1030. https://doi.org/10.1360/04wd0030
      Wang, B., Huang, F., Wu, Z. W., et al., 2009. Multi-Scale Climate Variability of the South China Sea Monsoon: A Review. Dynamics of Atmospheres and Oceans, 47(1-3): 15-37. https://doi.org/10.1016/j.dynatmoce.2008.09.004
      Wang, H., Gu, H. B., Jiang, J. Y., et al., 2016. Hydrochemical Characteristics and Origin Including Isotope Technique of the River Water in the Yili River Basin, Xinjiang. Quaternary Sciences, 36(6): 1383-1392(in Chinese with English abstract).
      Xu, G. X., Guo, Q. S., Niu, S. K., et al., 2013. Research on Climate Change Characteristics of Different Climatic Regions in Hainan Island in the Last 50 Years. Journal of Natural Resources, 28(5): 799-810(in Chinese with English abstract).
      Xu, S. Y., Xu, M. Y., Gao, Y. X., 1954. The Climate of Hainan Island. Acta Meteorologica Sinica, 12(3): 195-212(in Chinese).
      Yao, J. Q., Liu, X. C., Hu, W. F., 2021. Stable Isotope Compositions of Precipitation over Central Asia. Peer. J., 9: e11312. https://doi.org/10.7717/peerj.11312
      Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51(4): 525-548. https://doi.org/10.1002/rog.20023
      Zhang, B. B., Xu, Q., Gao, D. Q., et al., 2022. Characteristics and Drivers of δD and δ18O in Precipitation over Subtropical China. Terrestrial Ecosystem and Conservation, 2(4): 13-20(in Chinese with English abstract).
      Zhang, Q. Z., Tao, Z., Ma, Z. W., et al., 2016. Riverine Hydrochemistry and CO2 Consumption in the Tropic Monsoon Region: A Case Study in a Granite-Hosted Basin, Hainan Island, China. Environmental Earth Sciences, 75(5): 436. https://doi.org/10.1007/s12665-016-5250-0
      Zhong, J., Wallin, M. B., Wang, W. F., et al., 2021. Synchronous Evaporation and Aquatic Primary Production in Tropical River Networks. Water Research, 200: 117272. https://doi.org/10.1016/j.watres.2021.117272
      Zhou, N., Liu, S. M., Song, G. D., et al., 2022. Responses of Nutrient Biogeochemistry and Nitrogen Cycle to Seasonal Upwelling in Coastal Waters of the Eastern Hainan Island. Acta Oceanologica Sinica, 41(6): 99-113. https://doi.org/10.1007/s13131-021-1934-8
      Zhou, S. Z., 1981. On the Climatic Features of Hainan Island. Journal of East China Normal University (Natural Science), (1): 61-71(in Chinese with English abstract).
      陈静生, 王忠, 1993. 海南岛雨水、河水、地下水氢氧稳定同位素特征及其关系. 地理科学, 13(3): 273-278.
      陈新明, 甘义群, 刘运德, 等, 2011. 长江干流水体氢氧同位素空间分布特征. 地质科技情报, 30(5): 110-114.
      冯芳, 李忠勤, 金爽, 等, 2013. 天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析. 水科学进展, 24(5): 634-641.
      郭恩华, 王鼎祥, 陈琍, 1982. 海南岛降水与季风的关系. 热带地理, 2(1): 15-20, 64.
      翦知湣, 金海燕, 2008. 大洋碳循环与气候演变的热带驱动. 地球科学进展, 23(3): 221-227.
      李高聪, 高抒, 戴晨, 2016. 海南岛主要入海河流流域地貌演化. 第四纪研究, 36(1): 121-130.
      李宗省, 张百娟, 冯起, 等, 2023. 我国西部高寒山区同位素生态水文研究进展. 地球科学, 48(3): 1156-1178. doi: 10.3799/dqkx.2022.264
      刘金庆, 印萍, 高飞, 等, 2018. 南渡江河口水体氢氧同位素特征及对台风"海鸥" 的响应. 海洋地质与第四纪地质, 38(1): 170-177.
      刘小婵, 赵建军, 张洪岩, 等, 2015. TRMM降水数据在东北地区的精度验证与应用. 自然资源学报, 30(6): 1047-1056.
      罗婷, 王远清, 李丽平, 2020. 影响海南岛的台风降水及水汽输送源地分析. 气象与环境学报, 36(6): 42-49.
      毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
      彭精诚, 郑栩, 吴卫华, 2022. 热带海南岛地表和地下化学风化: 对全球碳循环及海水Sr同位素演化研究的启示. 高校地质学报, 28(6): 849-860.
      王贺, 谷洪彪, 姜纪沂, 等, 2016. 新疆伊犁河流域河水同位素与水化学特征及成因. 第四纪研究, 36(6): 1383-1392.
      许格希, 郭泉水, 牛树奎, 等, 2013. 近50a来海南岛不同气候区气候变化特征研究. 自然资源学报, 28(5): 799-810.
      徐淑英, 许孟英, 高由禧, 1954. 海南岛的气候. 气象学报, 12(3): 195-212.
      张蓓蓓, 徐庆, 高德强, 等, 2022. 中国亚热带大气降水氢氧稳定同位素特征及其影响因素. 陆地生态系统与保护学报, (24): 13-20.
      周淑贞, 1981. 海南岛的气候特征. 华东师范大学学报(自然科学版), (1): 61-71.
    • Relative Articles

    • Cited by

      Periodical cited type(0)

      Other cited types(1)

    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (362) PDF downloads(42) Cited by(1)
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return