Citation: | Liu Zhenghao, Liu Yang, Liu Jia, Niu Shengli, Zou Yongliao, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205 |
Appéré, T., Schmitt, B., Langevin, Y., et al., 2011. Winter and Spring Evolution of Northern Seasonal Deposits on Mars from OMEGA on Mars Express. Journal of Geophysical Research: Planets, 116(E5): E05001. https://doi.org/10.1029/2010je003762
|
Arfstrom, J., Hartmann, W. K., 2005. Martian Flow Features, Moraine-Like Ridges, and Gullies: Terrestrial Analogs and Interrelationships. Icarus, 174(2): 321-335. https://doi.org/10.1016/j.icarus.2004.05.026
|
Arnold, N. S., Conway, S. J., Butcher, F. E. G., et al., 2019. Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars' South Polar Ice Cap. Journal of Geophysical Research: Planets, 124(8): 2101-2116. https://doi.org/10.1029/2019JE006061
|
Arvidson, R., Adams, D., Bonfiglio, G., et al., 2008. Mars Exploration Program 2007 Phoenix Landing Site Selection and Characteristics. Journal of Geophysical Research: Planets, 113(E3): E00A03. https://doi.org/10.1029/2007JE003021
|
Baker, D. M. H., Head, J. W., Marchant, D. R., 2010. Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of ISMEniae Fossae, Mars: Evidence for Extensive Mid-Latitude Glaciation in the Late Amazonian. Icarus, 207(1): 186-209. https://doi.org/10.1016/j.icarus.2009.11.017
|
Bierson, C. J., Tulaczyk, S., Courville, S. W., et al., 2021. Strong MARSIS Radar Reflections from the Base of Martian South Polar Cap may be Due to Conductive Ice or Minerals. Geophysical Research Letters, 48(13): e2021GL093880. https://doi.org/10.1029/2021GL093880
|
Brown, A. J., Calvin, W. M., Murchie, S. L., 2012. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) North Polar Springtime Recession Mapping: First 3 Mars Years of Observations. Journal of Geophysical Research: Planets, 117(E12): E00J20. https://doi.org/10.1029/2012JE004113
|
Butcher, F. E. G., 2022. Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press, Oxford. https://doi.org/10.1093/acrefore/9780190647926.013.239
|
Butcher, F. E. G., Conway, S. J., Arnold, N. S., 2016. Are the Dorsa Argentea on Mars Eskers? Icarus, 275: 65-84. https://doi.org/10.1016/j.icarus.2016.03.028
|
Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101
|
Byrne, S., Dundas, C. M., Kennedy, M. R., et al., 2009. Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science, 325(5948): 1674-1676. https://doi.org/10.1126/science.1175307
|
Campbell, B. A., Putzig, N. E., Carter, L. M., et al., 2013. Roughness and Near-Surface Density of Mars from SHARAD Radar Echoes. Journal of Geophysical Research: Planets, 118(3): 436-450. https://doi.org/10.1002/jgre.20050
|
Cantor, B. A., Wolff, M. J., James, P. B., et al., 1998. Regression of Martian North Polar Cap: 1990—1997 Hubble Space Telescope Observations. Icarus, 136(2): 175-191. https://doi.org/10.1006/icar.1998.6020
|
Carr, M. H., 2007. The Surface of Mars. Cambridge University Press, Cambridge.
|
Carr, M. H., Schaber, G. G., 1977. Martian Permafrost Features. Journal of Geophysical Research, 82(28): 4039-4054. https://doi.org/10.1029/JS082i028p04039
|
Christensen, P. R., 2003. Formation of Recent Martian Gullies through Melting of Extensive Water-Rich Snow Deposits. Nature, 422: 45-48. https://doi.org/10.1038/nature01436
|
Chuang, F., Crown, D., 2005. Surface Characteristics and Degradational History of Debris Aprons in the Tempe Terra/Mareotis Fossae Region of Mars. Icarus, 179(1): 24-42. https://doi.org/10.1016/j.icarus.2005.05.014
|
Clark, B. R., Mullin, R. P., 1976. Martian Glaciation and the Flow of Solid CO2. Icarus, 27(2): 215-228. https://doi.org/10.1016/0019-1035(76)90005-1
|
Clifford, S. M., Crisp, D., Fisher, D. A., et al., 2000. The State and Future of Mars Polar Science and Exploration. Icarus, 144(2): 210-242. https://doi.org/10.1006/icar.1999.6290
|
Conway, S. J., Balme, M. R., 2014. Decameter Thick Remnant Glacial Ice Deposits on Mars. Geophysical Research Letters, 41(15): 5402-5409. https://doi.org/10.1002/2014GL060314
|
Conway, S. J., Butcher, F. E. G., de Haas, T., et al., 2018. Glacial and Gully Erosion on Mars: A Terrestrial Perspective. Geomorphology, 318: 26-57. https://doi.org/10.1016/j.geomorph.2018.05.019
|
Conway, S. J., de Haas, T., Harrison, T. N., 2019. Martian Gullies: A Comprehensive Review of Observations, Mechanisms and Insights from Earth Analogues. Geological Society, London, Special Publications, 467(1): 7-66. https://doi.org/10.1144/sp467.14
|
Costard, F. M., Kargel, J. S., 1995. Outwash Plains and Thermokarst on Mars. Icarus, 114(1): 93-112. https://doi.org/10.1006/icar.1995.1046
|
Dickson, J. L., Head, J. W., Fassett, C. I., 2012. Patterns of Accumulation and Flow of Ice in the Mid-Latitudes of Mars during the Amazonian. Icarus, 219(2): 723-732. https://doi.org/10.1016/j.icarus.2012.03.010
|
Dickson, J. L., Head, J. W., Marchant, D. R., 2010. Kilometer-Thick Ice Accumulation and Glaciation in the Northern Mid-Latitudes of Mars: Evidence for Crater-Filling Events in the Late Amazonian at the Phlegra Montes. Earth and Planetary Science Letters, 294(3-4): 332-342. https://doi.org/10.1016/j.epsl.2009.08.031
|
Dundas, C. M., Bramson, A. M., Ojha, L., et al., 2018. Exposed Subsurface Ice Sheets in the Martian Mid-Latitudes. Science, 359(6372): 199-201. https://doi.org/10.1126/science.aao1619
|
Dundas, C. M., Byrne, S., McEwen, A. S., et al., 2014. HiRISE Observations of New Impact Craters Exposing Martian Ground Ice. Journal of Geophysical Research: Planets, 119(1): 109-127. https://doi.org/10.1002/2013JE004482
|
Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nature Geoscience, 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5
|
Dundas, C. M., Mellon, M. T., Conway, S. J., et al., 2021. Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research: Planets, 126(3): e2020JE006617. https://doi.org/10.1029/2020je006617
|
Fassett, C. I., Levy, J. S., Dickson, J. L., et al., 2014. An Extended Period of Episodic Northern Mid-Latitude Glaciation on Mars during the Middle to Late Amazonian: Implications for Long-Term Obliquity History. Geology, 42(9): 763-766. https://doi.org/10.1130/g35798.1
|
Fastook, J. L., Head, J. W., 2014. Amazonian Mid- to High-Latitude Glaciation on Mars: Supply-Limited Ice Sources, Ice Accumulation Patterns, and Concentric Crater Fill Glacial Flow and Ice Sequestration. Planetary and Space Science, 91: 60-76. https://doi.org/10.1016/j.pss.2013.12.002
|
Fastook, J. L., Head, J. W., Marchant, D. R., 2014. Formation of Lobate Debris Aprons on Mars: Assessment of Regional Ice Sheet Collapse and Debris-Cover Armoring. Icarus, 228: 54-63. https://doi.org/10.1016/j.icarus.2013.09.025
|
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., 2004. Global Distribution of Near-Surface Hydrogen on Mars. Journal of Geophysical Research: Planets, 109(E9): E09006. https://doi.org/10.1029/2003JE002160
|
Fenton, L. K., Herkenhoff, K. E., 2000. Topography and Stratigraphy of the Northern Martian Polar Layered Deposits Using Photoclinometry, Stereogrammetry, and MOLA Altimetry. Icarus, 147(2): 433-443. https://doi.org/10.1006/icar.2000.6459
|
Fisher, D., 2005. A Process to Make Massive Ice in the Martian Regolith Using Long-Term Diffusion and Thermal Cracking. Icarus, 179(2): 387-397. https://doi.org/10.1016/j.icarus.2005.07.024
|
Forget, F., Haberle, R. M., Montmessin, F., et al., 2006. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 311(5759): 368-371. https://doi.org/10.1126/science.1120335
|
Gatto, L. W., Anderson, D. M., 1975. Alaskan Thermokarst Terrain and Possible Martian Analog. Science, 188(4185): 255-7. https://doi.org/10.1126/science.188.4185.255
|
Grima, C., Mouginot, J., Kofman, W., et al., 2022. The Basal Detectability of an Ice-Covered Mars by MARSIS. Geophysical Research Letters, 49(2): e2021GL096518. https://doi.org/10.1029/2021gl096518
|
Guallini, L., Rossi, A. P., Lauro, S. E., et al., 2014. "Unconformity-Bounded" Stratigraphic Units in the South Polar Layered Deposits (Promethei Lingula, Mars). In: Rocha, R., Pais, J., Kullberg, J., et al., eds. . STRATI 2013. Springer Geology. Springer, Cham.
|
Hamilton, C. W., Fagents, S. A., Wilson, L., 2010. Explosive Lava-Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups. Journal of Geophysical Research: Planets, 115(E9): E09006. https://doi.org/10.1029/2009JE003546
|
Harish, Vijayan, S., Mangold, N., et al., 2020. Water-Ice Exposing Scarps within the Northern Midlatitude Craters on Mars. Geophysical Research Letters, 47(14): e2020GL089057. https://doi.org/10.1029/2020GL089057
|
Hauber, E., van Gasselt, S., Chapman, M. G., et al., 2008. Geomorphic Evidence for Former Lobate Debris Aprons at Low Latitudes on Mars: Indicators of the Martian Paleoclimate. Journal of Geophysical Research: Planets, 113(E2): E02007. https://doi.org/10.1029/2007JE002897
|
Hauber, E., van Gasselt, S., Ivanov, B., et al., 2005. Discovery of a Flank Caldera and Very Young Glacial Activity at Hecates Tholus, Mars. Nature, 434: 356-361. https://doi.org/10.1038/nature03423
|
Head, J. W., Marchant, D. R., Agnew, M. C., et al., 2006a. Extensive Valley Glacier Deposits in the Northern Mid-Latitudes of Mars: Evidence for Late Amazonian Obliquity-Driven Climate Change. Earth and Planetary Science Letters, 241(3/4): 663-671. https://doi.org/10.1016/j.epsl.2005.11.016
|
Head, J. W., Nahm, A. L., Marchant, D. R., et al., 2006b. Modification of the Dichotomy Boundary on Mars by Amazonian Mid-Latitude Regional Glaciation. Geophysical Research Letters, 33(8): L08S03. https://doi.org/10.1029/2005GL024360
|
Head, J. W., Marchant, D. R., Dickson, J. L., et al., 2010. Northern Mid-Latitude Glaciation in the Late Amazonian Period of Mars: Criteria for the Recognition of Debris-Covered Glacier and Valley Glacier Landsystem Deposits. Earth and Planetary Science Letters, 294(3-4): 306-320. https://doi.org/10.1016/j.epsl.2009.06.041
|
Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al., 2003. Recent Ice Ages on Mars. Nature, 426: 797-802. https://doi.org/10.1038/nature02114
|
Head, J. W., Pratt, S., 2001. Extensive Hesperian-Aged South Polar Ice Sheet on Mars: Evidence for Massive Melting and Retreat, and Lateral Flow and Ponding of Meltwater. Journal of Geophysical Research: Planets, 106(E6): 12275-12299. https://doi.org/10.1029/2000je001359
|
Herkenhoff, K. E., Byrne, S., Russell, P. S., et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711-1715. https://doi.org/10.1126/science.1143544
|
Herkenhoff, K. . E., Plaut, J. J., 2000. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars. Icarus, 144(2): 243-253. https://doi.org/10.1006/icar.1999.6287
|
Hoffman, N., 2002. Active Polar Gullies on Mars and the Role of Carbon Dioxide. Astrobiology, 2(3): 313-323. https://doi.org/10.1089/153110702762027899
|
Holt, J. W., Safaeinili, A., Plaut, J. J., et al., 2008. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science, 322(5905): 1235-1238. https://doi.org/10.1126/science.1164246
|
Hubbard, B., Milliken, R. E., Kargel, J. S., et al., 2011. Geomorphological Characterisation and Interpretation of a Mid-Latitude Glacier-Like Form: Hellas Planitia, Mars. Icarus, 211(1): 330-346. https://doi.org/10.1016/j.icarus.2010.10.021
|
Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7-8): 928-952. https://doi.org/10.1016/j.pss.2006.12.003.
|
Jing, H. M., Zhang, H., Li, H., et al., 2011. Parallel Numerical Analysis on the Rheology of the Martian Ice-Rock Mixture. Journal of Earth Science, 22(2): 176-181. https://doi.org/10.1007/s12583-011-0170-0
|
Kadish, S. J., Head, J. W., 2011. Preservation of Layered Paleodeposits in High-Latitude Pedestal Craters on Mars. Icarus, 213(2): 443-450. https://doi.org/10.1016/j.icarus.2011.03.029
|
Kadish, S., Head, J., Parsons, R., et al., 2008. The Ascraeus Mons Fan-Shaped Deposit: Volcano–Ice Interactions and the Climatic Implications of Cold-Based Tropical Mountain Glaciation. Icarus, 197(1): 84-109. https://doi.org/10.1016/j.icarus.2008.03.019
|
Khuller, A. R., Christensen, P. R., 2021. Evidence of Exposed Dusty Water Ice within Martian Gullies. Journal of Geophysical Research: Planets, 126(2): e2020JE006539. https://doi.org/10.1029/2020je006539
|
Kieffer, H. H., Chase, S. C., Martin, T. Z., et al., 1976. Martian North Pole Summer Temperatures: Dirty Water Ice. Science, 194(4271): 1341-1344. https://doi.org/10.1126/science.194.4271.1341
|
Kieffer, H. H., Christensen, P. R., Titus, T. N., 2006. CO2 Jets Formed by Sublimation beneath Translucent Slab Ice in Mars' Seasonal South Polar Ice Cap. Nature, 442: 793-796. https://doi.org/10.1038/nature04945
|
Kolb, E. J., Tanaka, K. L., 2001. Geologic History of the Polar Regions of Mars Based on Mars Global Surveyor Data Ⅱ. Amazonian Period. Icarus, 154(1): 22-39. https://doi.org/10.1006/icar.2001.6676
|
Kostama, V. P., Kreslavsky, M. A., Head, J. W., 2006. Recent High-Latitude Icy Mantle in the Northern Plains of Mars: Characteristics and Ages of Emplacement. Geophysical Research Letters, 33(11): L11201. https://doi.org/10.1029/2006GL025946
|
Krasilnikov, S. S., Kuzmin, R. O., Evdokimova, N. A., 2018. Remnant Massifs of Layered Deposits at High Northern Latitudes of Mars. Solar System Research, 52(1): 26-36. https://doi.org/10.1134/S0038094617060065
|
Lalich, D. E., Hayes, A. G., Poggiali, V., 2022. Explaining Bright Radar Reflections below the South Pole of Mars without Liquid Water. Nature Astronomy, 6: 1142-1146. https://doi.org/10.1038/s41550-022-01775-z
|
Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Summer Evolution of the North Polar Cap of Mars as Observed by OMEGA/Mars Express. Science, 307(5715): 1581-1584. https://doi.org/10.1126/science.1109438
|
Laskar, J., Correia, A. C. M., Gastineau, M., et al., 2004. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus, 170(2): 343-364. https://doi.org/10.1016/j.icarus.2004.04.005
|
Lauro, S. E., Pettinelli, E., Caprarelli, G., et al., 2021. Multiple Subglacial Water Bodies below the South Pole of Mars Unveiled by New MARSIS Data. Nature Astronomy, 5: 63-70. https://doi.org/10.1038/s41550-020-1200-6
|
Lefort, A., Russell, P. S., Thomas, N., et al., 2009. Observations of Periglacial Landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research: Planets, 114(E4): E04005. https://doi.org/10.1029/2008je003264
|
Lefort, A., Russell, P. S., Thomas, N., 2010. Scalloped Terrains in the Peneus and Amphitrites Paterae Region of Mars as Observed by HiRISE. Icarus, 205(1): 259-268. https://doi.org/10.1016/j.icarus.2009.06.005
|
Leighton, R. B., Murray, B. C., 1966. Behavior of Carbon Dioxide and Other Volatiles on Mars. Science, 153(3732): 136-144. https://doi.org/10.1126/science.153.3732.136
|
Levrard, B., Forget, F., Montmessin, F., et al., 2004. Recent Ice-Rich Deposits Formed at High Latitudes on Mars by Sublimation of Unstable Equatorial Ice during Low Obliquity. Nature, 431: 1072-1075. https://doi.org/10.1038/nature03055
|
Levrard, B., Forget, F., Montmessin, F., et al., 2007. Recent Formation and Evolution of Northern Martian Polar Layered Deposits as Inferred from a Global Climate Model. Journal of Geophysical Research: Planets, 112(E6): E06012. https://doi.org/10.1029/2006JE002772
|
Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research: Planets, 114(E1): E01007. https://doi.org/10.1029/2008je003273
|
Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial "Brain Terrain" and Periglacial Mantle Processes. Icarus, 202(2): 462-476. https://doi.org/10.1016/j.icarus.2009.02.018
|
Levy, J., Head, J. W., Marchant, D. R., 2010. Concentric Crater Fill in the Northern Mid-Latitudes of Mars: Formation Processes and Relationships to Similar Landforms of Glacial Origin. Icarus, 209(2): 390-404. https://doi.org/10.1016/j.icarus.2010.03.036
|
Levy, J. S., Fassett, C. I., Head, J. W., et al., 2014. Sequestered Glacial Ice Contribution to the Global Martian Water Budget: Geometric Constraints on the Volume of Remnant, Midlatitude Debris-Covered Glaciers. Journal of Geophysical Research: Planets, 119(10): 2188-2196. https://doi.org/10.1002/2014JE004685
|
Li, C., Zheng, Y. K., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610: 308-312. https://doi.org/10.1038/s41586-022-05147-5
|
Li, H., Robinson, M. S., Jurdy, D. M., 2005. Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons. Icarus, 176(2): 382-394. https://doi.org/10.1016/j.icarus.2005.02.011
|
Liu, Y., Liu, Z. H., Wu, X., et al., 2021. Evolution of Water Environment on Mars. Acta Geologica Sinica, 95(9): 2725-2741 (in Chinese with English abstract).
|
Lucchitta, B. K., 1981. Mars and Earth: Comparison of Cold-Climate Features. Icarus, 45(2): 264-303. https://doi.org/10.1016/0019-1035(81)90035-x
|
Lucchitta, B. K., 1984. Ice and Debris in the Fretted Terrain, Mars. Journal of Geophysical Research: Solid Earth, 89(S02): B409-B418. https://doi.org/10.1029/JB089iS02p0B409
|
Madeleine, J. B., Forget, F., Head, J. W., et al., 2009. Amazonian Northern Mid-Latitude Glaciation on Mars: A Proposed Climate Scenario. Icarus, 203(2): 390-405. https://doi.org/10.1016/j.icarus.2009.04.037
|
Madeleine, J. B., Head, J. W., Forget, F., et al., 2014. Recent Ice Ages on Mars: The Role of Radiatively Active Clouds and Cloud Microphysics. Geophysical Research Letters, 41(14): 4873-4879. https://doi.org/10.1002/2014GL059861
|
Malin, M. C., Edgett, K. S., 2001. Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission. Journal of Geophysical Research: Planets, 106(E10): 23429-23570. https://doi.org/10.1029/2000je001455
|
Mangold, N., 2003. Geomorphic Analysis of Lobate Debris Aprons on Mars at Mars Orbiter Camera Scale: Evidence for Ice Sublimation Initiated by Fractures. Journal of Geophysical Research: Planets, 108(E4): 8021. https://doi.org/10.1029/2002JE001885
|
Mangold, N., Maurice, S., Feldman, W. C., et al., 2004. Spatial Relationships between Patterned Ground and Ground Ice Detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research: Planets, 109(E8): E08001. https://doi.org/10.1029/2004je002235
|
Mattei, E., Pettinelli, E., Lauro, S. E., et al., 2022. Assessing the Role of Clay and Salts on the Origin of MARSIS Basal Bright Reflections. Earth and Planetary Science Letters, 579: 117370. https://doi.org/10.1016/j.epsl.2022.117370
|
McGill, G. E., Hills, L. S., 1992. Origin of Giant Martian Polygons. Journal of Geophysical Research: Planets, 97(E2): 2633-2647. https://doi.org/10.1029/91JE02863
|
Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008a. Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research: Planets, 113(E3): E00A23. https://doi.org/10.1029/2007JE003039
|
Mellon, M. T., Boynton, W. V., Feldman, W. C., et al., 2008b. A Prelanding Assessment of the Ice Table Depth and Ground Ice Characteristics in Martian Permafrost at the Phoenix Landing Site. Journal of Geophysical Research: Planets, 113(E3): E00A25. https://doi.org/10.1029/2007je003067
|
Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al., 2009. Ground Ice at the Phoenix Landing Site: Stability State and Origin. Journal of Geophysical Research: Planets, 114(E1): E00E07. https://doi.org/10.1029/2009je003417
|
Milkovich, S. M., Head, J. W., Marchant, D. R., 2006. Debris-Covered Piedmont Glaciers along the Northwest Flank of the Olympus Mons Scarp: Evidence for Low-Latitude Ice Accumulation during the Late Amazonian of Mars. Icarus, 181(2): 388-407. https://doi.org/10.1016/j.icarus.2005.12.006
|
Milliken, R. E., Mustard, J. F., Goldsby, D. L., 2003. Viscous Flow Features on the Surface of Mars: Observations from High-Resolution Mars Orbiter Camera (MOC) Images. Journal of Geophysical Research: Planets, 108(E6): 5057. https://doi.org/10.1029/2002je002005
|
Mischna, M. A., Richardson, M. I., Wilson, R. J., et al., 2003. On the Orbital Forcing of Martian Water and CO2 Cycles: A General Circulation Model Study with Simplified Volatile Schemes. Journal of Geophysical Research: Planets, 108(E6): 5062. https://doi.org/10.1029/2003je002051
|
Morgan, G. A., Head, J. W., Marchant, D. R., 2009. Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in the Deuteronilus Mensae Northern Dichotomy Boundary Region, Mars: Constraints on the Extent, Age and Episodicity of Amazonian Glacial Events. Icarus, 202(1): 22-38. https://doi.org/10.1016/j.icarus.2009.02.017
|
Morgan, G. A., Putzig, N. E., Perry, M. R., et al., 2021. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nature Astronomy, 5: 230-236. https://doi.org/10.1038/s41550-020-01290-z
|
Mouginot, J., Kofman, W., Safaeinili, A., et al., 2009. MARSIS Surface Reflectivity of the South Residual Cap of Mars. Icarus, 201(2): 454-459. https://doi.org/10.1016/j.icarus.2009.01.009
|
Mouginot, J., Pommerol, A., Kofman, W., et al., 2010. The 3-5 MHz Global Reflectivity Map of Mars by MARSIS/Mars Express: Implications for the Current Inventory of Subsurface H2O. Icarus, 210(2): 612-625. https://doi.org/10.1016/j.icarus.2010.07.003
|
Musselwhite, D. S., Swindle, T. D., Lunine, J. I., 2001. Liquid CO2 Breakout and the Formation of Recent Small Gullies on Mars. Geophysical Research Letters, 28(7): 1283-1285. https://doi.org/10.1029/2000GL012496
|
Mustard, J. F., Cooper, C. D., Rifkin, M. K., 2001. Evidence for Recent Climate Change on Mars from the Identification of Youthful Near-Surface Ground Ice. Nature, 412: 411-414. https://doi.org/10.1038/35086515
|
Mutch, T. A., Arvidson, R. E., Binder, A. B., et al., 1977. The Geology of the Viking Lander 2 Site. Journal of Geophysical Research, 82(28): 4452-4467. https://doi.org/10.1029/JS082i028p04452
|
Ng, F. S. L., Zuber, M. T., 2006. Patterning Instability on the Mars Polar Ice Caps. Journal of Geophysical Research: Planets, 111(E2): E02005. https://doi.org/10.1029/2005je002533
|
Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268
|
Pathare, A. V., Feldman, W. C., Prettyman, T. H., et al., 2018. Driven by Excess? Climatic Implications of New Global Mapping of Near-Surface Water-Equivalent Hydrogen on Mars. Icarus, 301: 97-116. https://doi.org/10.1016/j.icarus.2017.09.031
|
Pierce, T. L., Crown, D. A., 2003. Morphologic and Topographic Analyses of Debris Aprons in the Eastern Hellas Region, Mars. Icarus, 163(1): 46-65. https://doi.org/10.1016/s0019-1035(03)00046-0
|
Plaut, J. J., Picardi, G., Safaeinili, A., et al., 2007. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science, 316(5821): 92-95. https://doi.org/10.1126/science.1139672
|
Plaut, J. J., Safaeinili, A., Holt, J. W., et al., 2009. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Geophysical Research Letters, 36(2): L02203. https://doi.org/10.1029/2008GL036379
|
Plug, L. J., Werner, B. T., 2001. Fracture Networks in Frozen Ground. Journal of Geophysical Research: Solid Earth, 106(B5): 8599-8613. https://doi.org/10.1029/2000jb900320
|
Schon, S. C., Head, J. W., Fassett, C. I., 2012. Recent High-Latitude Resurfacing by a Climate-Related Latitude-Dependent Mantle: Constraining Age of Emplacement from Counts of Small Craters. Planetary and Space Science, 69(1): 49-61. https://doi.org/10.1016/j.pss.2012.03.015
|
Séjourné, A., Costard, F., Gargani, J., et al., 2011. Scalloped Depressions and Small-Sized Polygons in Western Utopia Planitia, Mars: A New Formation Hypothesis. Planetary and Space Science, 59(5-6): 412-422. https://doi.org/10.1016/j.pss.2011.01.007
|
Séjourné, A., Costard, F., Swirad, Z. M., et al., 2019. Grid Mapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-Related Landforms to Understand Multiple Ice-Rich Deposits in Utopia Planitia. Journal of Geophysical Research: Planets, 124(2): 483-503. https://doi.org/10.1029/2018je005665
|
Sharp, R. P., 1973. Mars: Fretted and Chaotic Terrains. Journal of Geophysical Research, 78(20): 4073-4083. https://doi.org/10.1029/JB078i020p04073
|
Shean, D. E., 2010. Candidate Ice-Rich Material within Equatorial Craters on Mars. Geophysical Research Letters, 37(24): L24202. https://doi.org/10.1029/2010GL045181
|
Shean, D. E., Head, J. W. Ⅲ, Fastook, J. L., et al., 2007. Recent Glaciation at High Elevations on Arsia Mons, Mars: Implications for the Formation and Evolution of Large Tropical Mountain Glaciers. Journal of Geophysical Research: Planets, 112(E3): E03004. https://doi.org/10.1029/2006JE002761
|
Shean, D. E., Head, J. W., Marchant, D. R., 2005. Origin and Evolution of a Cold-Based Tropical Mountain Glacier on Mars: The Pavonis Mons Fan-Shaped Deposit. Journal of Geophysical Research: Planets, 110(E5): E05001. https://doi.org/10.1029/2004je002360
|
Sizemore, H. G., Zent, A. P., Rempel, A. W., 2015. Initiation and Growth of Martian Ice Lenses. Icarus, 251: 191-210. https://doi.org/10.1016/j.icarus.2014.04.013
|
Smith, I. B., 2022. A Retrospective on Mars Polar Ice and Climate. Oxford University Press, Oxford.
|
Smith, I. B., Lalich, D. E., Rezza, C., et al., 2021. A Solid Interpretation of Bright Radar Reflectors under the Mars South Polar Ice. Geophysical Research Letters, 48(15): e2021GL093618. https://doi.org/10.1029/2021GL093618
|
Smith, I. B., Putzig, N. E., Holt, J. W., et al., 2016. An Ice Age Recorded in the Polar Deposits of Mars. Science, 352(6289): 1075-1078. https://doi.org/10.1126/science.aad6968
|
Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al., 2009. H2O at the Phoenix Landing Site. Science, 325(5936): 58-61. https://doi.org/10.1126/science.1172339
|
Soderblom, L. A., Kreidler, T. J., Masursky, H., 1973. Latitudinal Distribution of a Debris Mantle on the Martian Surface. Journal of Geophysical Research, 78(20): 4117-4122. https://doi.org/10.1029/jb078i020p04117
|
Sori, M. M., Bramson, A. M., 2019. Water on Mars, with a Grain of Salt: Local Heat Anomalies are Required for Basal Melting of Ice at the South Pole Today. Geophysical Research Letters, 46(3): 1222-1231. https://doi.org/10.1029/2018GL080985.
|
Squyres, S. W., 1978. Martian Fretted Terrain: Flow of Erosional Debris. Icarus, 34(3): 600-613. https://doi.org/10.1016/0019-1035(78)90048-9
|
Squyres, S. W., 1979. The Distribution of Lobate Debris Aprons and Similar Flows on Mars. Journal of Geophysical Research: Solid Earth, 84(B14): 8087-8096. https://doi.org/10.1029/JB084iB14p08087
|
Squyres, S. W., Carr, M. H., 1986. Geomorphic Evidence for the Distribution of Ground Ice on Mars. Science, 231(4735): 249-252. https://doi.org/10.1126/science.231.4735.249
|
Tanaka, K., Rodriguez, J., Skinnerjr, J., et al., 2008. North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification. Icarus, 196(2): 318-358. https://doi.org/10.1016/j.icarus.2008.01.021
|
Titus, T. N., Kieffer, H. H., Christensen, P. R., 2003. Exposed Water Ice Discovered near the South Pole of Mars. Science, 299(5609): 1048-1051. https://doi.org/10.1126/science.1080497
|
Treiman, A. H., 2003. Geologic Settings of Martian Gullies: Implications for Their Origins. Journal of Geophysical Research: Planets, 108(E4): 8031. https://doi.org/10.1029/2002je001900
|
Tulaczyk, S. M., Foley, N. T., 2020. The Role of Electrical Conductivity in Radar Wave Reflection from Glacier Beds. The Cryosphere, 14(12): 4495-4506. https://doi.org/10.5194/tc-14-4495-2020
|
Wagstaff, K. L., Titus, T. N., Ivanov, A. B., et al., 2008. Observations of the North Polar Water Ice Annulus on Mars Using THEMIS and TES. Planetary and Space Science, 56(2): 256-265. https://doi.org/10.1016/j.pss.2007.08.008
|
Warner, N. H., Gupta, S., Calef, F., et al., 2015. Minimum Effective Area for High Resolution Crater Counting of Martian Terrains. Icarus, 245: 198-240. https://doi.org/10.1016/j.icarus.2014.09.024
|
Xiao, L., 2022. What Geological Habitability Evolution did Mars Undergo? Earth Science, 47(10): 3792-3793(in Chinese).
|
Xiao, L., 2023. Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science, 34(5): 1626-1628. https://doi.org/10.1007/s12583-023-1929-7
|
Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract).
|
刘洋, 刘正豪, 吴兴, 等, 2021. 火星的水环境演化. 地质学报, 95(9): 2725-2741. doi: 10.3969/j.issn.0001-5717.2021.09.007
|
肖龙, 2022. 火星的地质环境及宜居性演变历史如何?地球科学, 47(10): 3792-3793. doi: 10.3799/dqkx.2022.811
|
赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755-2768. doi: 10.3969/j.issn.0001-5717.2021.09.009
|