Citation: | Liao Anjie, Zhang Yan, Wang Fei, Ma Yu, 2025. Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures. Earth Science, 50(1): 286-298. doi: 10.3799/dqkx.2023.206 |
Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
|
Altindag, R., 2003. Correlation of Specific Energy with Rock Brittleness Concepts on Rock Cutting. Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171. http://reference.sabinet.co.za/webx/access/journal_archive/0038223X/2979.pdf
|
Bai, F. T., Sun, Y. H., Liu, Y. M., et al., 2017. Evaluation of the Porous Structure of Huadian Oil Shale during Pyrolysis Using Multiple Approaches. Fuel, 187: 1-8. https://doi.org/10.1016/j.fuel.2016.09.012
|
Chen, G. Q., Jiang, W. Z., Sun, X., et al., 2019. Quantitative Evaluation of Rock Brittleness Based on Crack Initiation Stress and Complete Stress-Strain Curves. Bulletin of Engineering Geology and the Environment, 78(8): 5919-5936. https://doi.org/10.1007/s10064-019-01486-2
|
Chen, G. Q., Wu, J. C., Jiang, W. Z., et al., 2020. An Evaluation Method of Rock Brittleness Based on the Whole Process of Elastic Energy Evolution. Chinese Journal of Rock Mechanics and Engineering, 39(5): 901-911 (in Chinese with English abstract).
|
Chen, H. Q., Meng, L. B., 2019. Mechanical Characteristics and Acoustic Emission Characteristics of Limestone Triaxial Unloading after High Temperature Effect. Safety in Coal Mines, 50(4): 58-62 (in Chinese with English abstract).
|
Deng, H. F., Yuan, X. F., Li, J. L., et al., 2014. Fracture Mechanics Characteristics and Deterioration Mechanism of Sandstone under Reservoir Immersion Interaction. Earth Science, 39(1): 108-114 (in Chinese with English abstract).
|
Gautam, P. K., Verma, A. K., Maheshwar, S., et al., 2016. Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature. Rock Mechanics and Rock Engineering, 49(5): 1985-1993. https://doi.org/10.1007/s00603-015-0797-8
|
Hajiabdolmajid, V., Kaiser, P., 2003. Brittleness of Rock and Stability Assessment in Hard Rock Tunneling. Tunnelling and Underground Space Technology, 18(1): 35-48. https://doi.org/10.1016/S0886-7798(02)00100-1
|
Jiang, H. P., Jiang, A. N., Yang, X. R., 2021. Statistical Damage Constitutive Model of High Temperature Rock Based on Weibull Distribution and Its Verification. Rock and Soil Mechanics, 42(7): 1894-1902 (in Chinese with English abstract).
|
Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., et al., 2017. Mechanical Behaviour of Australian Strathbogie Granite under In-Situ Stress and Temperature Conditions: An Application to Geothermal Energy Extraction. Geothermics, 65: 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002
|
Li, B. B., Yang, K., Yuan, M., et al., 2017. Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures. Earth Science, 42(8): 1403-1412 (in Chinese with English abstract).
|
Li, C. D., Meng, J., Xiang, L. Y., et al., 2023. Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).
|
Li, Q. S., Yang, S. Q., Chen, G. F., 2014. Strength and Deformation Properties of Post-High-Temperature Joint Sandstone. Journal of China Coal Society, 39(4): 651-657 (in Chinese with English abstract).
|
Li, T. B., Chen, Z. Q., Chen, G. Q., et al., 2015. An Experimental Study of Energy Mechanism of Sandstone with Different Moisture Contents. Rock and Soil Mechanics, 36(S2): 229-236 (in Chinese with English abstract).
|
Liang, S. F., Fang, S. Z., Wei, G. H., et al., 2021. Experiments on Mechanical Properties of Siliceous Sandstone after High Temperature. Journal of Zhengzhou University (Engineering Science), 42(3): 87-92 (in Chinese with English abstract).
|
Liu, Q. S., Xu, X. C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, 19(4): 408-411 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.002
|
Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198 (in Chinese with English abstract).
|
Meng, L. B., Li, T. B., Xu, J., et al., 2012. Experimental Study on Influence of Confining Pressure on Shale Mechanical Properties under High Temperature Condition. Journal of China Coal Society, 37(11): 1829-1833 (in Chinese with English abstract).
|
Meng, W., He, C., Wu, F. Y., et al., 2022. Effects of Thermal Stress of Rock Masses Generated by Geothermal Gradient on Rockburst Prediction. Journal of Southwest Jiaotong University, 57(4): 903-909 (in Chinese with English abstract).
|
Qin, Y., Tian, H., Xu, N. X., et al., 2020. Physical and Mechanical Properties of Granite after High-Temperature Treatment. Rock Mechanics and Rock Engineering, 53: 305-322. https://doi.org/10.1007/s00603-019-01919-0
|
Su, C. D., Guo, W. B., Li, X. S., 2008. Experimental Research on Mechanical Properties of Coarse Sandstone after High Temperatures. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1162-1170 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.06.009
|
Tang, H. M., Zhang, Y. H., Sun, Y. Z., 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.03.012
|
Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).
|
Tarasov, B. G., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59(4): 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
|
Wan, Z. J., Zhao, Y. S., Dong, F. K., et al., 2008. Experimental Study on Mechanical Characteristics of Granite under High Temperatures and Triaxial Stresses. Chinese Journal of Rock Mechanics and Engineering, 27(1): 72-77 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.01.011
|
Wang, X. G., Hu, B., Tang, H. M., et al., 2016. Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro-Mechanical Coupling State. Earth Science, 41(5): 886-894 (in Chinese with English abstract).
|
Wang, Z. Z., Qin, B. D., Guo, J. Q., et al., 2022. Influence of High Temperature Treatment on Mechanical Properties and Energy Evolution Mechanism of Sandstone. Journal of Henan Polytechnic University (Natural Science), 41(6): 181-187 (in Chinese with English abstract).
|
Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).
|
Wu, G., Wang, D. Y., Zhai, S. T., 2012. Acoustic Emission Characteristics of Sandstone after High Temperature under Uniaxial Compression. Rock and Soil Mechanics, 33(11): 3237-3242 (in Chinese with English abstract).
|
Xie, H. P., Ju, Y., Li, L. Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
|
Yang, S. Q., Ranjith, P. G., Jing, H. W., et al., 2017. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments. Geothermics, 65: 180-197. https://doi.org/10.1016/j.geothermics.2016.09.008
|
Yin, G. Z., Li, X. S., Zhao, H. B., 2009. Experimental Investigation on Mechanical Properties of Coarse Sandstone after High Temperature under Conventional Triaxial Compression. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.03.020
|
Zhang, H., Li, T. B., Chen, G. Q., et al., 2014. Acoustic Emission Characteristics of Granite in a Triaxial Compression Test at Different Temperatures. Modern Tunnelling Technology, 51(5): 33-40 (in Chinese with English abstract).
|
Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51: 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
|
Zhang, L. Y., Lu, W. T., Mao, X. B., 2007. Experimental Research on Mechanical Properties of Sandstone at High Temperature. Journal of Mining & Safety Engineering, 24(3): 293-297 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3363.2007.03.009
|
Zhang, Y., Feng, X. T., Yang, C. X., et al., 2019. Fracturing Evolution Analysis of Beishan Granite under True Triaxial Compression Based on Acoustic Emission and Strain Energy. International Journal of Rock Mechanics and Mining Sciences, 117: 150-161. https://doi.org/10.1016/j.ijrmms.2019.03.029
|
Zhang, Y., Feng, X. T., Yang, C. X., et al., 2021. Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre-Peak Deformation Characteristic and Post-Peak Energy Evolution. Rock Mechanics and Rock Engineering, 54: 1277-1291. https://doi.org/10.1007/s00603-020-02330-w
|
Zunino, F., Castro, J., Lopez, M., 2015. Thermo-Mechanical Assessment of Concrete Microcracking Damage Due to Early-Age Temperature Rise. Construction and Building Materials, 81: 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126
|
Zuo, J. P., Zhou, H. W., Xie, H. P., et al., 2008. Meso-Experimental Research on Sandstone Failure Behavior under Thermal-Mechanical Coupling Effect. Rock and Soil Mechanics, 29(6): 1477-1482 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2008.06.009
|
陈国庆, 吴家尘, 蒋万增, 等, 2020. 基于弹性能演化全过程的岩石脆性评价方法. 岩石力学与工程学报, 39(5): 901-911.
|
陈海清, 孟陆波, 2019. 灰岩三轴卸荷力学特性及声发射特征的高温后效应. 煤矿安全, 50(4): 58-62.
|
邓华锋, 原先凡, 李建林, 等, 2014. 浸泡作用下砂岩断裂力学特性及劣化机理. 地球科学, 39(1): 108-114. doi: 10.3799/dqkx.2014.011
|
蒋浩鹏, 姜谙男, 杨秀荣, 2021. 基于Weibull分布的高温岩石统计损伤本构模型及其验证. 岩土力学, 42(7): 1894-1902.
|
李波波, 杨康, 袁梅, 等, 2017. 不同温度下孔隙压力对煤岩渗流特性的影响机制. 地球科学, 42(8): 1403-1412.
|
李长冬, 孟杰, 项林语, 等, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
|
李庆森, 杨圣奇, 陈国飞, 2014. 高温后节理砂岩强度及变形破坏特性. 煤炭学报, 39(4): 651-657.
|
李天斌, 陈子全, 陈国庆, 等, 2015. 不同含水率作用下砂岩的能量机制研究. 岩土力学, 36(S2): 229-236.
|
梁书锋, 方士正, 韦贵华, 等, 2021. 高温作用后硅质砂岩力学性能试验. 郑州大学学报(工学报), 42(3): 87-92.
|
刘泉声, 许锡昌, 2000. 温度作用下脆性岩石的损伤分析. 岩石力学与工程学报, 19(4): 408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002
|
刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
|
孟陆波, 李天斌, 徐进, 等, 2012. 高温作用下围压对页岩力学特性影响的试验研究. 煤炭学报, 37(11): 1829-1833.
|
蒙伟, 何川, 吴枋胤, 等, 2022. 地温梯度孕育的岩体热应力对岩爆预测的影响. 西南交通大学学报, 57(4): 903-909.
|
苏承东, 郭文兵, 李小双, 2008. 粗砂岩高温作用后力学效应的试验研究. 岩石力学与工程学报, 27(6): 1162-1170. doi: 10.3321/j.issn:1000-6915.2008.06.009
|
唐辉明, 张宜虎, 孙云志, 2007. 岩体等效变形参数研究. 地球科学, 32(3): 389-396. http://www.earth-science.net/article/id/3465
|
汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
|
万志军, 赵阳升, 董付科, 等, 2008. 高温及三轴应力下花岗岩体力学特性的实验研究. 岩石力学与工程学报, 27(1): 72-77. doi: 10.3321/j.issn:1000-6915.2008.01.011
|
王新刚, 胡斌, 唐辉明, 等, 2016. 渗透压‒应力耦合作用下泥岩三轴流变实验及其流变本构. 地球科学, 41(5): 886-894. doi: 10.3799/dqkx.2016.075
|
王珍珍, 秦本东, 郭佳奇, 等, 2022. 高温作用对煤系砂岩力学性能和能量演化机制的影响. 河南理工大学学报(自然科学版), 41(6): 181-187.
|
温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
|
吴刚, 王德咏, 翟松韬, 2012. 单轴压缩下高温后砂岩的声发射特性. 岩土力学, 33(11): 3237-3242.
|
谢和平, 鞠杨, 黎立云, 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
|
尹光志, 李小双, 赵洪宝, 2009. 高温后粗砂岩常规三轴压缩条件下力学特性试验研究. 岩石力学与工程学报, 28(3): 598-604. doi: 10.3321/j.issn:1000-6915.2009.03.020
|
张航, 李天斌, 陈国庆, 等, 2014. 不同温度下花岗岩三轴压缩试验的声发射特性. 现代隧道技术, 51(5): 33-40.
|
张连英, 卢文厅, 茅献彪, 2007. 高温作用下砂岩力学性能实验. 采矿与安全工程学报, 24(3): 293-297. doi: 10.3969/j.issn.1673-3363.2007.03.009
|
左建平, 周宏伟, 谢和平, 等, 2008. 温度和应力耦合作用下砂岩破坏的细观试验研究. 岩土力学, 29(6): 1477-1482. doi: 10.3969/j.issn.1000-7598.2008.06.009
|