Citation: | Luo Hao, Liu Ziwei, Guo Qinghai, 2025. Optimization of Soil Radon Quantitative Testing Methods and Its Application in Identification of Medium-Low Temperature Convective Geothermal Systems. Earth Science, 50(4): 1559-1574. doi: 10.3799/dqkx.2023.211 |
Alharbi, W. R., Abbady, A. G. E., 2013. Measurement of Radon Concentrations in Soil and the Extent of Their Impact on the Environment from Al-Qassim, Saudi Arabia. Natural Science, 5(1): 93-98. https://doi.org/10.4236/ns.2013.51015
|
Deng, A. L., Sun, H. P., 2002. Dynamic Changes of Hot Water Caused by Over-Exploitation of Qicun Geothermal Field in Shanxi Province. Earth Science, 27(2): 134-208(in Chinese with English abstract).
|
Duggal, V., Rani, A., Mehra, R., 2014. Measurement of Soil-Gas Radon in Some Areas of Northern Rajasthan, India. Journal of Earth System Science, 123(6): 1241-1247. https://doi.org/10.1007/s12040-014-0473-5
|
Fujiyoshi, R., Ohno, M., Okamoto, K., et al., 2015. Soil Radon (222Rn) Monitoring in a Forest Site in Fukushima, Japan. Environmental Earth Sciences, 73(8): 4135-4142. https://doi.org/10.1007/s12665-014-3698-3
|
Gao, H. L., Hu, Z. H., Wan, H. P., et al., 2023. Characteristics of Geothermal Geology of the Gulu Geothermal Field in Tibet. Earth Science, 48(3): 1014-1029(in Chinese with English abstract).
|
Gao, L. P., 2007. Ground Hot Water Resources and Their Development and Utilization in Daying, Xinzhou City. Today Hubei (Theory Edition), 1(6): 4-5(in Chinese).
|
Han, D. M., Liang, X., Currell, M. J., et al., 2010a. Environmental Isotopic and Hydrochemical Characteristics of Groundwater Systems in Daying and Qicun Geothermal Fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 24(22): 3157-3176. https://doi.org/10.1002/hyp.7742
|
Han, D. M., Liang, X., Jin, M. G., et al., 2010b. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1/2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011
|
Kumar, A., Arora, V., Walia, V., et al., 2014. Study of Soil Gas Radon Variations in the Tectonically Active Dharamshala and Chamba Regions, Himachal Pradesh, India. Environmental Earth Sciences, 72(8): 2837-2847. https://doi.org/10.1007/s12665-014-3188-7
|
Li, J. B., Zhou, Z. C., Yun, L., et al., 2022. Identification of Hidden Faults Based on Soil Radon Measurement in the Southern Margin of the Beishan Area, Gansu Province. Acta Geologica Sinica, 96(6): 2240-2250(in Chinese with English abstract).
|
Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98(in Chinese with English abstract).
|
Liao, Z. J., Zhao, P., 1999. Tropical Yunnan and Tibet: Geothermal Resources and Typical Geothermal Systems. Science Press, Beijing(in Chinese).
|
Liu, J. H., Wang, Z. W., Liu, S. T., et al., 2006. The Evaluation Method of Soil Radon and Mercury Gas Measurement about Urban Active Fault Zones. Journal of Jilin University (Earth Science Edition), 36(2): 295-297, 304(in Chinese with English abstract).
|
Ma, J. H., Shi, J. D., 2004. Analysis on Geothermal Characteristics of Duncun Village in Xinzhou City. Huabei Natural Resources, (4): 7-10(in Chinese).
|
Miao, Q. Z., Wang, G. L., Xing, L. X., et al., 2020. Study on Application of Deep Thermal Reservoir by Using Geophysical and Geochemical Methods in the Jizhong Depression Zone. Acta Geologica Sinica, 94(7): 2147-2156(in Chinese with English abstract).
|
Pang, Z. H., 1988. Basic Characteristics and Genetic Analysis of Geothermal Field in Zhangzhou Basin. Advances in Earth Science, 3(3): 62-63(in Chinese).
|
Ruckerbauer, F., Winkler, R., 2001. Radon Concentration in Soil Gas: A Comparison of Methods. Applied Radiation and Isotopes, 55(2): 273-280. https://doi.org/10.1016/S0969-8043(00)00389-4
|
Seyis, C., İnan, S., Yalçın, M. N., 2022. Major Factors Affecting Soil Radon Emanation. Natural Hazards, 114(2): 2139-2162. https://doi.org/10.1007/s11069-022-05464-y
|
Shi, M., Kang, F. X., Yin, T., et al., 2022. Occurrence Mechanism of Convective Geothermal Systems in Jiaodong Peninsula, China. Frontiers in Earth Science, 10: 898414. https://doi.org/10.3389/feart.2022.898414
|
Shi, M., Kang, F. X., Zhang, J., et al., 2019. Occurrence Mechanism and Geothermal Exploration Model of Low-Medium Temperature Geothermal Systems of Convective Type in Jiaodong Peninsula. Geological Review, 65(5): 1276-1287(in Chinese with English abstract).
|
Shweikani, R., Giaddui, T. G., Durrani, S. A., 1995. The Effect of Soil Parameters on the Radon Concentration Values in the Environment. Radiation Measurements, 25(1/2/3/4): 581-584. https://doi.org/10.1016/1350-4487(95)00188-K
|
Singh, S., Kumar Sharma, D., Dhar, S., et al., 2006. Geological Significance of Soil Gas Radon: A Case Study of Nurpur Area, District Kangra, Himachal Pradesh, India. Radiation Measurements, 41(4): 482-485. https://doi.org/10.1016/j.radmeas.2005.10.009
|
Su, J. J., 2012. Determination of Soil Radon Concentration and Its Influencing Factors. Technology Innovation and Application, 2(29): 237(in Chinese).
|
Sun, X. L., Yang, P. T., Xiang, Y., et al., 2018. Across-Fault Distributions of Radon Concentrations in Soil Gas for Different Tectonic Environments. Geosciences Journal, 22(2): 227-239. https://doi.org/10.1007/s12303-017-0028-2
|
Sundal, A. V., Valen, V., Soldal, O., et al., 2008. The Influence of Meteorological Parameters on Soil Radon Levels in Permeable Glacial Sediments. Science of the Total Environment, 389(2/3): 418-428. https://doi.org/10.1016/j.scitotenv.2007.09.001
|
Tian, J., Li, Y. M., Fan, Y. F., et al., 2023. Geochemical Characteristics and Circulation Conceptual Model of Geothermal Fluid in the Shenzao Coastal Hot Springs in Guangdong Province. Earth Science, 48(3): 894-907(in Chinese with English abstract).
|
Walia, V., Su, T. C., Fu, C. C., et al., 2005. Spatial Variations of Radon and Helium Concentrations in Soil-Gas across the Shan-Chiao Fault, Northern Northern Taiwan. Radiation Measurements, 40(2-6): 513-516. https://doi.org/10.1016/j.radmeas.2005.04.011
|
Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937(in Chinese with English abstract).
|
Wang, J. X., 2014. Evaluation of Geothermal Resources in qicun, Xinzhou City (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Wang, J. Y., 1996. Medium-Low Temperature Convective Geothermal System. Earth Science Frontiers, 3(3): 97-99, 101-104(in Chinese with English abstract)
|
Yang, F. T., Pang, Z. H., Wang, C. H., et al., 2012. Genesis Model of Laozishan Geothermal Field, Subei Basin. Journal of Jilin University (Earth Science Edition), 42(2): 468-475(in Chinese with English abstract)
|
Zeng, M., Dong, H. G., Zhang, H. X., et al., 2012. Application Research of Soil Radon Measurement in Concealed Fault Detection of Middle Segment of Shawan Fault Zone. Journal of Seismological Research, 35(3): 347-352, 441(in Chinese with English abstract)
|
Zhai, Z. W., Yang, H. M., Chang, T. Y., et al., 2019. Influencing Factors of Geothermal Resources Occurrence in Xinding Basin. China Science and Technology Information, (5): 95-96, 13, 98 (in Chinese with English abstract).
|
Zhang, M. Z., Guo, Q. H., Liu, M. L., et al., 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987(in Chinese with English abstract)
|
Zhang, S. M., Ren, J. J., Luo, M. H., et al., 2008. Stepwise Landforms and Quaternary Episodic Uplifts of Mountains around Xinding Basin. Seismology and Geology, 30(1): 187-201(in Chinese with English abstract)
|
Zhang, W. X., Xiang, H. F., Li, R. C., 1995. Preliminary Study on Soil-Radon Distribution along the Xiadian Buried Fault. Northwestern Seismological Journal, (2): 46-50(in Chinese with English abstract)
|
Zhang, Y., Luo, J., Feng, J. Y., 2020. Characteristics of Geothermal Reservoirs and Utilization of Geothermal Resources in the Southeastern Coastal Areas of China. Journal of Groundwater Science and Engineering, 8(2): 134-142.
|
Zheng, T. T., Stefánsson, A., Kang, F. X., et al., 2023. Geochemical and Isotope Constraints on the Hydrogeology and Geochemistry of the Geothermal Waters in the Shandong Peninsula, China. Geothermics, 108: 102628. https://doi.org/10.1016/j.geothermics.2022.102628
|
邓安利, 孙和平, 2002. 山西省奇村地热田超采引起的热水动态变化. 地球科学, 27(2): 134-208. http://www.earth-science.net/article/id/1101
|
高洪雷, 胡志华, 万汉平, 等, 2023. 西藏谷露地热田地热地质特征. 地球科学, 48(3): 1014-1029. doi: 10.3799/dqkx.2022.150
|
高丽平, 2007. 忻州市大营地下热水资源及其开发利用. 今日湖北(理论版), 1(6): 4-5.
|
李杰彪, 周志超, 云龙, 等, 2022. 基于土壤氡气测量识别甘肃北山南缘隐伏断裂. 地质学报, 96(6): 2240-2250.
|
廖志杰, 2012. 福建无岩浆热源的深循环水热系统. 现代地质, 26(1): 85-98.
|
廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
|
刘菁华, 王祝文, 刘树田, 等, 2006. 城市活动断裂带的土壤氡、汞气评价方法. 吉林大学学报(地球科学版), 36(2): 295-297, 304.
|
马俊红, 史俊德, 2004. 忻州市顿村地热特征分析. 华北国土资源, (4): 7-10.
|
苗青壮, 王贵玲, 邢林啸, 等, 2020. 综合物化探方法在冀中坳陷深部热储探测中的应用. 地质学报, 94(7): 2147-2156. doi: 10.19762/j.cnki.dizhixuebao.2020225
|
庞忠和, 1988. 漳州盆地地热田基本特征及成因分析. 地球科学信息, 3(3): 62-63.
|
史猛, 康凤新, 张杰, 等, 2019. 胶东半岛中低温对流型地热资源赋存机理及找热模型. 地质论评, 65(5): 1276-1287.
|
苏家驹, 2012. 土壤氡浓度的测定及影响因素. 科技创新与应用, 2(29): 237.
|
天娇, 李义曼, 范翼帆, 等, 2023. 广东神灶海上温泉的流体地球化学特征及循环模式. 地球科学, 48(3): 894-907. doi: 10.3799/dqkx.2022.222
|
王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937.
|
汪集旸, 1996. 中低温对流型地热系统. 地学前缘, 3(3): 97-99, 101-104.
|
王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京: 中国地质大学.
|
杨峰田, 庞忠和, 王彩会, 等, 2012. 苏北盆地老子山地热田成因模式. 吉林大学学报(地球科学版), 42(2): 468-475.
|
曾敏, 董好刚, 张宏鑫, 等, 2012. 土壤氡气测量在沙湾断裂带中段隐伏断裂探测中的应用研究. 地震研究, 35(3): 347-352, 441. doi: 10.3969/j.issn.1000-0666.2012.03.009
|
翟志伟, 杨红梅, 常天印, 等, 2019. 忻定盆地地热资源赋存的影响因素. 中国科技信息, (5): 95-96, 13, 98.
|
张梦昭, 郭清海, 刘明亮, 等, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987. doi: 10.3799/dqkx.2022.087
|
张世民, 任俊杰, 罗明辉, 等, 2008. 忻定盆地周缘山地的层状地貌与第四纪阶段性隆升. 地震地质, 30(1): 187-201.
|
张晚霞, 向宏发, 李如成, 1995. 夏垫隐伏断裂土壤气氡分布特征的初步研究. 西北地震学报, (2): 46-50.
|
![]() |
![]() |