• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Ding Qizhen, Zhou Jinlong, Zhang Hongzhong, Huang Jing, Sun Ying, Bai Fan, Tu Zhi, Li Jun, 2025. Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin. Earth Science, 50(2): 737-751. doi: 10.3799/dqkx.2023.212
    Citation: Ding Qizhen, Zhou Jinlong, Zhang Hongzhong, Huang Jing, Sun Ying, Bai Fan, Tu Zhi, Li Jun, 2025. Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin. Earth Science, 50(2): 737-751. doi: 10.3799/dqkx.2023.212

    Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin

    doi: 10.3799/dqkx.2023.212
    • Received Date: 2023-05-23
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • The occurrence and development of land subsidence has become a global geological disaster. Based on the monitoring data of groundwater level, groundwater quality and land subsidence for years, the relationship between groundwater level dynamics and land subsidence was explored from the perspective of spatial horizontal-vertical-point by using GIS technology, Logistic curve model, linear trend analysis and grey correlation analysis. Finally, the influence of land subsidence on groundwater quality was discussed. The groundwater dynamic types in the study area included exploitation type, hydrologic-irrigation type and irrigation type, and the groundwater level showed a rapid and slow decline trend from 2019 to 2022, the average annual rate ranges from -0.97 m·a-1 to -0.25 m·a-1. By 2021, the amount and rate of land subsidence in the center of large land subsidence cone in the southeast direction of Gaochang district in the South Turpan Basin were -366 mm and -140 mm·a-1, respectively. There was a good coupling between the confined groundwater level depression cone and land subsidence cone, and there was a significant positive correlation between the deep confined groundwater level and the land subsidence (r=1.00), and the relationship was approximately linear in the Logical curve model. There was a significant positive correlation between the land subsidence and SO42- content in groundwater (r=0.95). Long-term over-exploitation of deep confined groundwater for agriculture irrigation results in compaction and consolidation of clay resulting in the land subsidence cone, and part of the released SO42- may enter deep confined aquifers.

       

    • Bai, F., Zhou, J. L., Zeng, Y. Y., 2022. Hydrochemical Characteristics and Quality of Groundwater in the Plains of the Turpan Basin. Arid Zone Research, 39(2): 419-428 (in Chinese with English abstract).
      Cao, H. L., Li, W., Su, C. L., et al., 2022. Indication of Hydrochemistry and δ34S-SO42- on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443 (in Chinese with English abstract).
      Chen, L., 2014. The Study of Regional Hydrogeological Conditions and Groundwater Circulation in Turpan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, C. X., Pei, S. P., 2001. Study on Groundwater Exploitation and Land Subsidence Model. Hydrogeology & Engineering Geology, (2): 5-8(in Chinese with English abstract).
      Cigna, F., Tapete, D., 2021. Urban Growth and Land Subsidence: Multi-Decadal Investigation Usinghuman Settlement Data and Satellite InSAR in Morelia, Mexico. Science of the Total Environment, 811: 152211. https://doi.org/10.1016/j.scitotenv.2021.152211
      Cigna, F., Tapete, D., 2020. Present-Day Land Subsidence Rates, Surface Faulting Hazard and Risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR-ScienceDirect. Remote Sensing of Environment, 253: 112161. https://doi.org/10.1016/j.rse.2020.112161
      Deng, J. L., 1987. Basic Methods of Grey System. Huazhong University of Science and Technology Press, Wuhan, 20-21(in Chinese with English abstract).
      Erban, L. E., Gorelick, S. M., Zebker, H. A., et al., 2013. Release of Arsenic to Deep Groundwater in the Mekong Delta, Vietnam, Linked to Pumping-Induced Land Subsidence. Proceedings of the National Academy of Sciences of the United States of America, 110(34): 13751-13756. https://doi.org/10.1073/pnas.1300503110
      Fu, C. C., Zhang, S., Zhang, W. J., et al., 2014. Hydrochemical Characteristics and Sources of Sulfate in Xijiteritary Confined Groundwater. Agricultural Research in the Arid Areas, 32(4): 187-193 (in Chinese with English abstract).
      Guo, Q. H., 2005. Groundwater System Evolution and Genesis of RelevantEnvironmental Problems: a Case Study at Taiyuan Basin, Shanxi Province, China(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Hasan, M. F., Smith, R., Vajedian, S., et al., 2023. Global Land Subsidence Mapping Reveals Widespread Loss of Aquifer Storage Capacity. Nature Communications, 14(1): 6180. https://doi.org/10.1038/s41467-023-41933-z
      Herrera-García, G., Ezquerro, P., Tomás, R., et al., 2021. Mapping the Global Threat of Land Subsidence. Science, 371(6524): 34-36. https://doi.org/10.1126/science.abb8549
      Hu, W. R., Fan, L., Tian, X. L., et al., 2013. Application of Excel in Logistic Curve Fitting. Agriculture Network Information, (3): 14-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJN201303006.htm
      Jones, C. E., An, K., Blom, R. G., et al., 2016. Anthropogenic and Geologic Influences on Subsidence in the Vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 121, 3867-3887. https://doi.org/10.1002/2015JB012636
      Jin, M. G., 1991. The Forecast of Groundwater Regime in the Grey System. Earth Science, 16(1): 91-94, 78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199101011.htm
      Li, H., Tang, Z. F., Liu, C. F., et al., 2008. Comprehansive Exploitation and Research of Brine Resources in the Lop Nur Salt Lake, Xinjiang. Acta Geoscientica Sinica, 29(4): 517-524 (in Chinese with English abstract).
      Liu, Y, 2013. Spatiotemporal Evolution of Land Subsidence and Mechanism Discussion in the Yellow River Delta(Dissertation). Institute of Oceanology, Chinese Academy of Science, Qingdao(in Chinese with English abstract).
      Li, Y. L., 2017. The Integrated Governance Research of Groundwater Over-Exploitation Region in Turpan Basin (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract).
      Liu, Y. J., Ma, T., Du, Y., et al., 2021. Compaction of Clay Aquitard: Principle, Technology and Hydrogeological Significance. Earth Science Frontiers, 25(5): 59-67(in Chinese with English abstract).
      Luo, Z. J., Wang, X., Dai, J., et al., 2023. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1): 238-252 (in Chinese with English abstract).
      Pearl, R., Reed, L. J., 1920. On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6): 275-288. https://doi.org/10.1073/pnas.6.6.275
      Reed, L. J., Pearl, R., 1927. On the Summation of Logistic Curves. Journal of the Royal Statistical Society, 90(4): 729-746. https://doi.org/10.1111/j.2397-2335.1927.tb02016.x
      Ren, G. Y., Xu, M. Z., Chu, Z. Y., et al., 2005. Changes of Surface Air Temperature in China during 1951-2004. Climatic and Environmental Research, 10(4): 717-727(in Chinese with English abstract). http://www.oalib.com/paper/1699661
      Smith, R., Knight, R., Fendorf, S., 2018. Overpumping Leads to California Groundwater Arsenic Threat. Nature Communications, 9(1): 2089. https://doi.org/10.1038/s41467-018-04475-3
      Sun, X. H., 2012. The Relationship between Sand Creep Characteristic and Land Subsidence of Xi'an (Dissertation). Chang'an University, Xian (in Chinese with English abstract).
      Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley and Sons, Inc, New York, 265-269.
      Wan, C. X., Liang, Z. Y., 1983. A Method Fitting the Logistic Curve. Acta Ecologica Sinica, 3(3): 288-296(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB198303010.htm
      Wang, F., Miu, L. C., 2011. Study of Long-Term Deformation Characteristic of Sand Aquifers for Land Subsidence Caused by Groundwater Withdrawal. Chinese Journal of Rock Mechanics and Engineering, 30(S1): 3135-3140 (in Chinese with English abstract).
      Wang, Z. Y., Gao, Z. J., Wang, Z., et al., 2019. Variation Characteristics of Groundwater Level in the Middle Reaches of the Heihe River Basin. Water Resources and Power, 37(4): 140-143(in Chinese with English abstract).
      Wang, Y. D., Feng, G., Li, Z. W., et al., 2022. A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: a Case Study in the Turpan-Hami Basin, China. Remote Sens, 14: 3832. https://doi.org/10.3390/rs14153832
      Wang, Y. X., Li, J. X., Ma, T., et al., 2020. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389.2020.1807452
      Yang, Y., Zheng, F. D., Liu, L. C., et al., 2013. Study on the Correlation between Groundwater Level and Ground Subsidence in Beijing Plain Areas. Geotechnical Investigation & Surveying, 41(8): 44-48(in Chinese with English abstract).
      Ye, S. J., Xue, Y. Q., Wu, J. C., et al., 2016. Progression and Mitigation of Land Subsidence in China. Hydrogeology Journal, 24(3): 685-693. https://doi.org/10.1007/s10040-015-1356-9
      Zak, D., Hupfer, M., Cabezas, A., et al., 2020. Sulphate in Freshwater Ecosystems: a Review of Sources, Biogeochemical Cycles, Ecotoxicological Effects and Bioremediation. Earth-Science Reviews, 212: 103446. https://doi.org/10.1016/j.earscirev.2020.103446
      Zhang, Y., Xue, Y. Q., Wu, J. C., et al., 2009. Experimental Research on Creep of Shanghai Sands. Rock and Soil Mechanics, 30(5): 1226-1230(in Chinese with English abstract).
      Zhou, Z. Y., 2012. Mechanism Research of Land Subsidence Caused by Groundwater Extraction. Geotechnical Investigation & Surveying, 40(3): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC201203006.htm
      白凡, 周金龙, 曾妍妍, 2022. 吐鲁番盆地平原区地下水水化学特征及水质评价. 干旱区研究, 39(2): 419-428.
      曹慧丽, 李伟, 苏春利, 等, 2023. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示. 地球科学, 48(9): 3432-3443. doi: 10.3799/dqkx.2022.119
      陈崇希, 裴顺平, 2001. 地下水开采-地面沉降模型研究. 水文地质工程地质, (2): 5-8.
      陈鲁, 2014. 吐鲁番盆地区域水文地质条件及地下水循环研究(博士学位论文). 北京: 中国地质大学.
      邓聚龙, 1987. 灰色系统基本方法. 武汉: 华中理工大学出版社.
      付昌昌, 张晟, 张文静, 等, 2014. 西吉县第三系承压水中硫酸盐的水文地球化学特征及其来源. 干旱地区农业研究, 32(4): 187-193.
      郭清海, 2005. 山西太原盆地孔隙地下水系统演化与相关环境问题成因分析(博士学位论文). 武汉: 中国地质大学.
      胡文冉, 范玲, 田晓莉, 等, 2013. Excel在Logistic曲线拟合中的应用. 农业网络信息, (3): 14-16.
      靳孟贵, 1991. 地下水动态的灰色预测. 地球科学, 16(1): 91-94, 78.
      李浩, 唐中凡, 刘传福, 等, 2008. 新疆罗布泊盐湖卤水资源综合开发研究. 地球学报, 29(4): 517-524.
      李英连, 2017. 吐鲁番盆地地下水超采区综合治理研究(硕士学位论文). 乌鲁木齐: 新疆农业大学.
      刘妍君, 马腾, 杜尧, 等, 2021. 黏性土弱透水层压实作用: 原理、技术及其水文地质意义. 地学前缘, 28(5): 59-67.
      刘勇, 2013. 黄河三角洲地区地面沉降时空演化特征及机理研究(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所).
      骆祖江, 王鑫, 代敬, 等, 2023. 地面沉降对地下水可采资源影响研究. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143
      任国玉, 徐铭志, 初子莹, 等, 2005. 近54年中国地面气温变化. 气候与环境研究, 10(4): 717-727.
      孙晓涵, 2012. 西安地面沉降与砂土蠕变关系初探(硕士学位论文). 西安: 长安大学.
      万昌秀, 梁中宇, 1983. 逻辑斯谛曲线的一种拟合方法. 生态学报, 3(3): 288-296.
      王非, 缪林昌. 2011. 抽水地面沉降中含水层长期变形特性研究. 岩石力学与工程学报, 30(S1): 3135-3140.
      王贞岩, 高宗军, 王姝, 等, 2019. 黑河流域中游地区地下水水位多年变化特征. 水电能源科学, 37(4): 140-143.
      杨勇, 郑凡东, 刘立才, 等, 2013. 北京平原区地下水水位与地面沉降关系研究. 工程勘察, 41(8): 44-48.
      张云, 薛禹群, 吴吉春, 等, 2009. 上海砂土蠕变变形特征的试验研究. 岩土力学, 30(5): 1226-1230, 1236.
      周载阳, 2012. 地下水开采引起地面沉降的机理研究. 工程勘察, 40(3): 22-26.
    • Relative Articles

    • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050255075100125
      Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.1 %FULLTEXT: 30.1 %META: 60.1 %META: 60.1 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
      Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.5 %其他: 14.5 %其他: 1.0 %其他: 1.0 %Seattle: 1.6 %Seattle: 1.6 %Thane: 0.8 %Thane: 0.8 %Washington: 0.5 %Washington: 0.5 %上海: 4.4 %上海: 4.4 %东京: 0.8 %东京: 0.8 %乌鲁木齐: 0.8 %乌鲁木齐: 0.8 %伊斯坦布尔: 0.5 %伊斯坦布尔: 0.5 %信阳: 0.5 %信阳: 0.5 %克孜勒苏: 0.5 %克孜勒苏: 0.5 %兰州: 0.8 %兰州: 0.8 %内江: 0.3 %内江: 0.3 %北京: 7.0 %北京: 7.0 %华盛顿州: 0.5 %华盛顿州: 0.5 %南京: 3.6 %南京: 3.6 %南昌: 4.1 %南昌: 4.1 %厦门: 0.5 %厦门: 0.5 %合肥: 1.8 %合肥: 1.8 %哥伦布: 0.3 %哥伦布: 0.3 %大庆: 0.3 %大庆: 0.3 %天津: 0.8 %天津: 0.8 %太原: 1.0 %太原: 1.0 %宣城: 0.5 %宣城: 0.5 %巴音郭楞: 1.0 %巴音郭楞: 1.0 %广州: 0.8 %广州: 0.8 %张家口: 5.7 %张家口: 5.7 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %昆明: 2.1 %昆明: 2.1 %杭州: 1.0 %杭州: 1.0 %武汉: 2.6 %武汉: 2.6 %沧州: 0.5 %沧州: 0.5 %洛阳: 0.5 %洛阳: 0.5 %济源: 1.0 %济源: 1.0 %温州: 0.8 %温州: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 1.3 %漯河: 1.3 %珠海: 0.5 %珠海: 0.5 %石家庄: 3.4 %石家庄: 3.4 %秦皇岛: 0.5 %秦皇岛: 0.5 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 8.8 %芒廷维尤: 8.8 %芝加哥: 1.8 %芝加哥: 1.8 %萍乡: 0.3 %萍乡: 0.3 %蚌埠: 0.5 %蚌埠: 0.5 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.3 %襄阳: 0.3 %西宁: 7.8 %西宁: 7.8 %西安: 2.1 %西安: 2.1 %诺伊达: 0.3 %诺伊达: 0.3 %诺沃克: 0.8 %诺沃克: 0.8 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.6 %运城: 1.6 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.3 %邯郸: 0.3 %郑州: 2.1 %郑州: 2.1 %重庆: 0.5 %重庆: 0.5 %长沙: 1.0 %长沙: 1.0 %其他其他SeattleThaneWashington上海东京乌鲁木齐伊斯坦布尔信阳克孜勒苏兰州内江北京华盛顿州南京南昌厦门合肥哥伦布大庆天津太原宣城巴音郭楞广州张家口成都扬州昆明杭州武汉沧州洛阳济源温州湖州漯河珠海石家庄秦皇岛绵阳芒廷维尤芝加哥萍乡蚌埠衡阳襄阳西宁西安诺伊达诺沃克贵阳运城遵义邯郸郑州重庆长沙

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (230) PDF downloads(39) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return