• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 3
    Mar.  2024
    Turn off MathJax
    Article Contents
    Xia Yongqi, Tuo Mingjie, Li Nuo, Qi Dongmei, Jianatiguli Wusiman, Wang Huihui, Wang Wenbo, Li Ting, Tai Zongyao, 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938. doi: 10.3799/dqkx.2023.213
    Citation: Xia Yongqi, Tuo Mingjie, Li Nuo, Qi Dongmei, Jianatiguli Wusiman, Wang Huihui, Wang Wenbo, Li Ting, Tai Zongyao, 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938. doi: 10.3799/dqkx.2023.213

    Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun

    doi: 10.3799/dqkx.2023.213
    • Received Date: 2023-07-24
      Available Online: 2024-04-12
    • Publish Date: 2024-03-25
    • The Dahongliutan two-mica granite is considered as parental rock to the adjacent pegmatite-type lithium deposits such as Bailongshan. To constrain the magmatic-hydrothermal evolution of granite and associated pegmatites, we selected the penetrative minerals, mica and tourmaline, from two-mica granite and pegmatite with different degrees of mineralization, for backscattering observation (BSE) and electron probe microanalysis (EPMA). In the two-mica granite (Ms1) and muscovite-microcline pegmatite (Ms2), the muscovite is homogeneous, with limited chemical variations. In muscovite-albite-spodumene pegmatite, the muscovite (Ms3) incorporates much higher Li (Li2O up to 4.68%) and F (up to 6.47%) in comparison to Ms1 and Ms2. There are additional Li-bearing phengite, zinnwaldite and lepidolite that have replaced muscovite. Tourmalines from two-mica granite (Tur1) and muscovite-microcline pegmatite (Tur2) belong to alkaline schorl, while those from spodumene pegmatite (Tur3) are alkaline elbaite. Compared to alkaline schorl, alkaline elbaite is enriched in SiO2, Al2O3, Li2O, but depleted in TiO2, MgO and CaO. The textural and compositional features of mica and tourmaline reveal that the two-mica granite and muscovite-microcline pegmatite were formed by magmatic process, without lithium mineralization. By contrast, muscovite-albite-spodumene pegmatite was formed during the magmatic-hydrothermal transition, where lithium was significantly enriched, and numerous lithium-rich minerals such as spodumene, lithium-rich polysilicon muscovite, Li-bearing phengite, zinnwaldite, lepidolite and elbaite, were precipitated. Accordingly, we propose that the magmatic-hydrothermal transition is of great significance for lithium mineralization. In pegmatite-type deposits, the presence of elbaite and lepidolite indicates high degree of magmatic evolution.

       

    • loading
    • Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (West China). Journal of Asian Earth Sciences, 44: 136-148. https://doi.org/10.1016/j.jseaes.2011.04.020
      Cao, R., Gao, Y. B., Chen, B., et al., 2023. Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field, Western Kunlun Orogen: Constraints from the B Isotopic Composition and Mineral-Chemistry. International Geology Review, 65(7): 1224-1242. https://doi.org/10.1080/00206814.2021.1899062
      Černý, P., Chapman, R., Teertstra, D. K., et al., 2003. Rubidium- and Cesium-Dominant Micas in Granitic Pegmatites. American Mineralogist, 88(11-12): 1832-1835. https://doi.org/10.2138/am-2003-11-1226
      Černý, P., London, D., Novák, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289
      Chen, Y. J., Xue, L. Z., Wang, X. L., et al., 2021. Progress in Geological Study of Pegmatite-Type Lithium Deposits in the World. Acta Geologica Sinica, 95(10): 2971-2995 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.10.004
      Ding, K., Liang, T., Yang, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. Journal of Central South University, 26(12): 3420-3435. https://doi.org/10.1007/s11771-019-4264-7
      Ding, K., Liang, T., Zhou, Y., et al., 2020. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope. Northwestern Geology, 53(1): 24-34 (in Chinese with English abstract). http://www.sciengine.com/doi/pdf/E98C47BD9C374B94A335EA740B582B85
      Feng, J., Jia, H. X., Xu, S. Q., et al., 2021. Prospecting Model of Pegmatite Type Lithium Beryllium Deposit in Dahongliutan Ore Concentration Area of West Kunlun and Its Geological Implications. Xinjiang Geology, 39(3): 410-417 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2021.03.008
      Feng, Y. G., Liang, T., Wang, M. X., et al., 2022. Geochemistry of Tourmaline from Granitic Pegmatites in East Qinling and Its Implications for Mineralization. Acta Petrologica Sinica, 38(2): 428-444 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.08
      Feng, Y. G., Wang, Y. Q., Zhang, Z., et al., 2019. Geochemistry of Triphylite in Dahongliutan Lithium Pegmatites, Xinjiang: Implications for Pegmatite Evolution. Acta Geologica Sinica, 93(6): 1405-1421 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.018
      Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. https://doi.org/10.1530/JME-15-0227
      Jiang, S. Y., Wang, C. L., Zhang, L., et al., 2021. In Situ Trace Element Tracing and Isotopic Dating Ofpegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017-3038 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.10.006
      Jiang, S. Y., Yu, J. M., Ni, P., et al., 2000. Tourmaline—A Sensitive Tracer for Petrogenesis and Minerogenesis. Geological Review, 46(6): 594-604 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2000.06.006
      Jolliff, B. L., Papike, J. J., Shearer, C. K., 1987. Fractionation Trends in Mica and Tourmaline as Indicators of Pegmatite Internal Evolution: Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3): 519-534. https://doi.org/10.1016/0016-7037(87)90066-4
      Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024
      Kong, H. L., Ren, G. L., Li, W. Y., et al., 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 56(2): 61-79 (in Chinese with English abstract).
      Li, J. K., Li, P., Huang, Z. B., et al., 2023. Geological Features and Formation Mechanism of Pegmatite-Type Rare-Metal Deposits in the Renli Orefield, Northern Hunan, China—An Overview. Earth Science Frontiers, 30(5): 1-25 (in Chinese with English abstract).
      Li, K., Gao, Y. B., Teng, J. X., et al., 2019. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang. Northwestern Geology, 52(4): 206-221 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2019.04.016
      Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
      Li, W. Y., Zhang, Z. W., Gao, Y. B., et al., 2022. Tectonic Transformation of the Kunlun Paleo-Tethyan Orogenic Belt and Related Mineralization of Critical Mineral Resources of Nickel, Cobalt, Manganese and Lithium. Geology in China, 49(5): 1385-1407 (in Chinese with English abstract).
      Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013-1025. https://doi.org/10.2113/gsecongeo.93.7.1013
      Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. https://doi.org/10.2113/gselements.8.4.275
      Liu, C., Wang, R. C., Wu, F. Y., et al., 2021. Lithium Mineralization in Qomolangma: First Report of Elbaite-Lepidolite Subtype Pegmatite in the Himalaya Leucogranite Belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.03
      London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
      Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637-650. https://doi.org/10.1016/S1367-9120(00)00011-0
      Peng, H. L., He, N. Q., Wang, M. C., et al., 2018. Geological Characteristics and Metallogenic Regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang. Northwestern Geology, 51(3): 146-154 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2018.03.013
      Qiao, G. B., Zhang, H. D., Wu, Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180-1194 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.07.003
      Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2006. Mineralogy and Geochemistry of Micas from the Pinilla de Fermoselle Pegmatite (Zamora, Spain). European Journal of Mineralogy, 18(3): 369-377. https://doi.org/10.1127/0935-1221/2006/0018-0369
      Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
      Tang, J. L., Ke, Q., Xu, X. W., et al., 2022. Magma Evolution and Mineralization of Longmenshan Lithium-Beryllium Pegmatite in Dahongliutan Area, West Kunlun. Acta Petrologica Sinica, 38(3): 655-675 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.05
      Teng, J. X., Gao, Y. B., He, Y. K., et al., 2021. Metallogenic Regularity and Resource Potential of Manganese, Lithium, Lead, Zinc and Iron in West Kunlun. Geological Publishing House, Beijing (in Chinese).
      Thomas, R., Davidson, P., Beurlen, H., 2012. The Competing Models for the Origin and Internal Evolution of Granitic Pegmatites in the Light of Melt and Fluid Inclusion Research. Mineralogy and Petrology, 106(1): 55-73. https://doi.org/10.1007/s00710-012-0212-z
      Thomas, R., Webster, J. D., Heinrich, W., 2000. Melt Inclusions in Pegmatite Quartz: Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401. https://doi.org/10.1007/s004100000120
      Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409): 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
      Trumbull, R. B., Beurlen, H., Wiedenbeck, M., et al., 2013. The Diversity of B-Isotope Variations in Tourmaline from Rare-Element Pegmatites in the Borborema Province of Brazil. Chemical Geology, 352: 47-62. https://doi.org/10.1016/j.chemgeo.2013.05.021
      Tu, Q. J., Han, Q., Li, P., et al., 2019. Basic Characteristics and Exploration Progress of the Spodumene Ore Deposit in the Dahongliutan Area, West Kunlun. Acta Geologica Sinica, 93(11): 2862-2873 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.11.011
      van Hinsberg, V. J., Henry, D. J., Dutrow, B. L., 2011. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements, 7(5): 327-332. https://doi.org/10.2113/gselements.7.5.327
      Van Lichtervelde, M., Holtz, F., Hanchar, J. M., 2010. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 160(1): 17-32. https://doi.org/10.1007/s00410-009-0462-x
      Veksler, I. V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1-4): 7-31. https://doi.org/10.1016/j.chemgeo.2004.06.002
      Veksler, I. V., Thomas, R., Schmidt, C., 2002. Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite. American Mineralogist, 87(5-6): 775-779. https://doi.org/10.2138/am-2002-5-621
      Wang, H., Gao, H., Ma, H. D., et al., 2020. Geological Characteristics and Pegmatite Vein Group Zoning of the Xuefengling, Xuepen, and Shuangya Lithium Deposits in Karakorum, Hetian, Xinjiang. Geotectonica et Metallogenia, 44(1): 57-68 (in Chinese with English abstract).
      Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053-1062 (in Chinese with English abstract).
      Wang, R. C., Xie, L., Zhu, Z. Y., et al., 2019. Micas: Important Indicators of Granite-Pegmatite-Related Rare-Metal Mineralization. Acta Petrologica Sinica, 35(1): 69-75 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.04
      Wang, W., Du, X. F., Liu, W., et al., 2022. Geological Characteristic and Discussion on Metallogenic Age of the West 509-Daoban Li-Be Rare Metal Deposit in the West Kunlun Orogenic Belt. Acta Petrologica Sinica, 38(7): 1967-1980 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.10
      Wang, Z., Chen, Z. Y., Li, J. K., et al., 2019. Indication of Mica Minerals for Magmatic-Hydrothermal Evolution of Renli Rare Metal Pegmatite Deposit. Mineral Deposits, 38(5): 1039-1052 (in Chinese with English abstract).
      Wang, H., Gao, H., Zhang, X. Y., et al., 2020. Geology and Geochronology of the Super-Large Bailongshan Li-Rb-(Be) Rare-Metal Pegmatite Deposit, West Kunlun Orogenic Belt, NW China. Lithos, 360-361: 105449. https://doi.org/10.1016/j.lithos.2020.105449
      Wei, X. P., Wang, H., Hu, J., et al., 2017. Geochemistry and Geochronology of the Dahongliutan Two-Mica Granite Pluton in Western Kunlun Orogen: Geotectonic Implications. Geochimica, 46(1): 66-80 (in Chinese with English abstract). doi: 10.3969/j.issn.0379-1726.2017.01.006
      Xiao, W. J., Han, F. L., Windley, B. F., et al., 2003. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia. International Geology Review, 45(4): 303-328. https://doi.org/10.2747/0020-6814.45.4.303
      Xiao, W. J., Windley, B. F., Fang, A. M., et al., 2001. Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China. Gondwana Research, 4(4): 826-827. https://doi.org/10.1016/S1342-937X(05)70611-0
      Xiao, W. J., Windley, B. F., Liu, D., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687-705. https://doi.org/10.1086/449326
      Xing, C. M., Wang, C. Y., Wang, H., 2020. Magmatic-Hydrothermal Processes Recorded by Muscovite and Columbite-Group Minerals from the Bailongshan Rare-Element Pegmatites in the West Kunlun-Karakorum Orogenic Belt, NW China. Lithos, 364-365: 105507. https://doi.org/10.1016/j.lithos.2020.105507
      Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2021. New Energy Strategy for Lithium Resource and the Continental Dynamics Research—Celebrating the Centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937-2954 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.10.002
      Yan, Q. H., Wang, H., Qiu, Z. W., et al., 2017. Chronology and Geological Significance of Cassiterite and Niobium-Tantalum Ore Deposits in Dahongliutan Rare Metal in West Kunlun. The 9th National Member Congress and 16th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, Xi'an (in Chinese with English abstract).
      Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561-573. https://doi.org/10.1016/j.oregeorev.2016.11.010
      Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213-236. https://doi.org/10.5382/econgeo.4858
      Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China: Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes. Chemical Geology, 312-313: 177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
      Zhang, C. L., Lu, S. N., Yu, H. F., et al., 2007. Tectonic Evolution of the West Kunlun Orogenic Belt on the Northern Margin of Qinghai-Tibet Plateau: Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Science in China (Series D), 37(2): 145-154 (in Chinese).
      Zhang, C. L., Ma, H. D., Zhu, B. Y., et al., 2019. Tectonic Evolution of the Western Kunlun-Karakorum Orogenic Belt and Its Coupling with the Mineralization Effect. Geological Review, 65(5): 1077-1102 (in Chinese with English abstract).
      Zhang, H., Wang, R. C., Tang, Y., 2008. How Long Does the Magma-Hydrothermal Transition Stage Last. Bulletin of Mineralogy Petrology and Geochemistry, 27 (Suppl. ): 22-23 (in Chinese with English abstract).
      Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41
      Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021a. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139
      Zhang, L., Long, X. P., Zhang, R., et al., 2017. Source Characteristics and Provenance of Metasedimentary Rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for Tectonic Setting and Crustal Growth. Gondwana Research, 46: 43-56. https://doi.org/10.1016/j.gr.2017.02.014
      Zhang, Z. Y., Jiang, Y. H., Niu, H. C., et al., 2021b. Fluid Inclusion and Stable Isotope Constraints on the Source and Evolution of Ore-Forming Fluids in the Bailongshan Pegmatitic Li-Rb Deposit, Xinjiang, Western China. Lithos, 380-381: 105824. https://doi.org/10.1016/j.lithos.2020.105824
      Zhao, J. Z., Cao, Z. J., Zhang, Z. J., et al., 2019. Analysis of the Genesis of Tourmaline and Lithium Beryllium Ore. Xinjiang Nonferrous Metals, 42(6): 57-60 (in Chinese with English abstract).
      Zhou, B., Sun, Y. X., Kong, D. Y., 2011. Geological Features and Prospecting Potential of Rare Metallic Deposits in the Dahongliutan Region, Xinjiang. Acta Geologica Sichuan, 31(3): 288-292 (in Chinese with English abstract).
      Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484
      Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese with English abstract).
      Zou, T. R., Yang, Y. Q., 1996. Color and Composition of Tourmaline in China. Mineral Deposits. 15(S1): 65-68 (in Chinese with English abstract).
      陈衍景, 薛莅治, 王孝磊, 等, 2021. 世界伟晶岩型锂矿床地质研究进展. 地质学报, 95(10): 2971-2995. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110004.htm
      丁坤, 梁婷, 周义, 等, 2020. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据. 西北地质, 53(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202001003.htm
      冯京, 贾红旭, 徐仕琪, 等, 2021. 西昆仑大红柳滩矿集区伟晶岩型锂铍矿床找矿模型及意义. 新疆地质, 39(3): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202103008.htm
      凤永刚, 梁婷, 王梦玺, 等, 2022. 东秦岭花岗伟晶岩中电气石地球化学特征及成矿指示意义. 岩石学报, 38(2): 428-444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202008.htm
      凤永刚, 王艺茜, 张泽, 等, 2019. 新疆大红柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩演化的指示意义. 地质学报, 93(6): 1405-1421. doi: 10.3969/j.issn.0001-5717.2019.06.018
      蒋少涌, 王春龙, 张璐, 等, 2021. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展. 地质学报, 95(10): 3017-3038. doi: 10.3969/j.issn.0001-5717.2021.10.006
      蒋少涌, 于际民, 倪培, 等, 2000. 电气石: 成岩成矿作用的灵敏示踪剂. 地质论评, 46(6): 594-604. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm
      孔会磊, 任广利, 李文渊, 等, 2023. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义. 西北地质, 56(2): 61-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202302003.htm
      李建康, 李鹏, 黄志飚, 等, 2023. 湘北仁里伟晶岩型稀有金属矿田的地质特征及成矿机制概述. 地学前缘, 30(5): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202305001.htm
      李侃, 高永宝, 滕家欣, 等, 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向. 西北地质, 52(4): 206-221. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201904020.htm
      李乐广, 王连训, 朱煜翔等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程地球科学, 48(9): 3221-3244. doi: 10.3799/dqkx.2022.141
      李文渊, 张照伟, 高永宝, 等, 2022. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究. 中国地质, 49(5): 1385-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205003.htm
      刘晨, 王汝成, 吴福元, 等, 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石‒锂云母型伟晶岩. 岩石学报, 37(11): 3287-3294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202111003.htm
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202303014.htm
      彭海练, 贺宁强, 王满仓, 等, 2018. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨. 西北地质, 51(3): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201803016.htm
      乔耿彪, 张汉德, 伍跃中, 等, 2015. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约. 地质学报, 89(7): 1180-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507003.htm
      唐俊林, 柯强, 徐兴旺, 等, 2022. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用. 岩石学报, 38(3): 655-675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202203005.htm
      滕家欣, 高永宝, 贺永康, 等, 2021. 西昆仑锰锂铅锌铁区域成矿规律与资源潜力. 北京: 地质出版社.
      涂其军, 韩琼, 李平, 等, 2019. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展. 地质学报, 93(11): 2862-2873. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911011.htm
      王核, 高昊, 马华东, 等, 2020. 新疆和田县雪凤岭锂矿床、雪盆锂矿床和双牙锂矿床地质特征及伟晶岩脉群分带初步研究. 大地构造与成矿学, 44(1): 57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001006.htm
      王核, 李沛, 马华东, 等, 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706005.htm
      王汝成, 谢磊, 诸泽颖, 等, 2019. 云母: 花岗岩‒伟晶岩稀有金属成矿作用的重要标志矿物. 岩石学报, 35(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202402008.htm
      王威, 杜晓飞, 刘伟, 等, 2022. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨. 岩石学报, 38(7): 1967-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207010.htm
      王臻, 陈振宇, 李建康, 等, 2019. 云母矿物对仁里稀有金属伟晶岩矿床岩浆‒热液演化过程的指示. 矿床地质, 38(5): 1039-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905006.htm
      魏小鹏, 王核, 胡军等, 2017. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义. 地球化学, 46(1): 66-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201701006.htm
      许志琴, 朱文斌, 郑碧海, 等, 2021. 新能源锂矿战略与大陆动力学研究: 纪念南京大学地球科学与工程学院100周年华诞. 地质学报, 95(10): 2937-2954. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110002.htm
      闫庆贺, 王核, 丘增旺, 等, 2017. 西昆仑大红柳滩稀有金属伟晶岩矿床锡石及铌钽铁矿年代学及其地质意义. 西安: 中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会.
      张传林, 陆松年, 于海锋, 等, 2007. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据. 中国科学(D辑), 37(2): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200702000.htm
      张传林, 马华东, 朱炳玉, 等, 2019. 西昆仑‒喀喇昆仑造山带构造演化及其成矿效应. 地质论评, 65(5): 1077-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201905003.htm
      张辉, 王汝成, 唐勇, 2008. 岩浆‒热液过渡阶段体系究竟持续多长. 矿物岩石地球化学通报, 27(增刊): 22-23.
      赵建忠, 曹子健, 张子蛟, 等, 2019. 浅析电气石与锂铍矿成因联系. 新疆有色金属, 42(6): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201906025.htm
      周兵, 孙义选, 孔德懿, 2011. 新疆大红柳滩地区稀有金属矿成矿地质特征及找矿前景. 四川地质学报, 31(3): 288-292. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201103010.htm
      邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.
      邹天人, 杨岳清, 1996. 中国电气石(碧玺)的颜色与成分. 矿床地质, 15(增刊): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm
    • dqkxzx-49-3-922附表1-2.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (966) PDF downloads(115) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return