• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 1
    Jan.  2024
    Turn off MathJax
    Article Contents
    Zheng Yongfei, Chen Renxu, Gao Peng, 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
    Citation: Zheng Yongfei, Chen Renxu, Gao Peng, 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28. doi: 10.3799/dqkx.2023.215

    Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones

    doi: 10.3799/dqkx.2023.215
    • Received Date: 2023-11-14
      Available Online: 2024-01-24
    • Publish Date: 2024-01-25
    • Anatectic metamorphism develops from high-grade metamorphism to crustal anataxis, marking population of extensional tectonism in continental collision zones. It is much more related to breakup than assembly of supercontinents in both space and time.Deciphering the anatectic metamorphism is critical to understand the tectonic evolution of continental collision zones in the late stage. It is substantial to resolve not only petrological problems such as crustal differentiation and granite petrogenesis but also tectonic problems such as supercontinent geodynamics in Wilson cycles. In general, continental collision zones may change their dynamic regime from compression to extension and their geothermal gradient from low to high during their evolution from the early to late stages. This results in different types of metamorphism and magmatism with given occurrences in both time and space. Alpine type metamorphism is caused by compressional heating at low geothermal gradients during subduction of one lithosphere beneath the others, and Barrovian type metamorphism occurs at moderate geothermal gradients due either to compressional heating during collisional thickening of the crust or to extensional decompression during nearly isothermal exhumation of the deeply subducted crust. In contrast, Buchan type metamorphism is caused by extensional heating at high geothermal gradients during continental rifting. Because of the anatectic metamorphism, granites are produced together with migmatites and granulites in the post-collisional stage. Therefore, granitic magmatism is the endmember product of anatectic metamorphism consequential to thinning of the thickened lithospheric mantle. Both processes are closely associated with the change of lithospheric thickness along continental collision zones. Although granites above oceanic subduction zone are mainly produced by fractional crystallization of mantle-derived mafic magmas, partial melting of crustal rocks is the dominant way to generate granitic magmas in continental collision zones. In particular, the source nature of crustal rocks is a key to the composition of granites. Ⅰ-type and S-type granites are primarily derived from partial melting of metaigneous and metasedimentary rocks, respectively. In comparison, A-type granites are derived from partial melting of either cumulates or restites. Dehydration and hydration melting are two fundamental mechanisms to produce granitic magmas. They can occur simultaneously at the same zones, leading to dehydration melting in the deeper crust and hydration melting in the shallower crust. Upwelling of the asthenospheric mantle consequential to thinning of the lithospheric mantle is a common geodynamic mechanism for continental active rifting, giving rise to the dehydration-hydration coupled melting to produce granite-migmatite-granulite associations in continental collision zones. As a consequence, supercontinent assembly is associated with compressional metamorphism during continental collision, whereas supercontinent breakup is associated with extensional metamorphism during active rifting. Continent rifting may not succeed but fail, resulting in anatectic metamorphism and granitic magmatism at convergent plate margins. Therefore, the failed continental rifting is a key process in linking the types of regional metamorphism to the tectonic evolution of continental collision zones from supercontinent assembly to breakup.

       

    • loading
    • Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17-22. https://doi.org/10.1038/307017a0
      Ashworth, J. R., Brown, M., 1990. High-Temperature Metamorphism and Crustal Anatexis. Kluwer Academic Publishers, Dordrecht, 407.
      Ballato, P., Uba, C. E., Landgraf, A., et al., 2011. Arabia-Eurasia Continental Collision: Insights from Late Tertiary Foreland-Basin Evolution in the Alborz Mountains, Northern Iran. Geological Society of America Bulletin, 123(1-2): 106-131. https://doi.org/10.1130/b30091.1
      Bartoli, O., 2021. Granite Geochemistry is not Diagnostic of the Role of Water in the Source. Earth and Planetary Science Letters, 564: 116927. https://doi.org/10.1016/j.epsl.2021.116927
      Beaumont, C., Ellis, S., Hamilton, J., et al., 1996. Mechanical Model for Subduction-Collision Tectonics of Alpine-Type Compressional Orogens. Geology, 24(8): 675-678. https://doi.org/10.1130/0091-7613
      Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      Brown, G. C., Fyfe, W. S., 1970. The Production of Granitic Melts during Ultrametamorphism. Contributions to Mineralogy and Petrology, 28(4): 310-318. https://doi.org/10.1007/BF00388953
      Brown, M., 1993. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 150(2): 227-241. https://doi.org/10.1144/gsjgs.150.2.0227
      Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961-964. https://doi.org/10.1130/g22853a.1
      Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193-234. https://doi.org/10.2747/0020-6814.49.3.193
      Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
      Brown, M., 2013. Granite: From Genesis to Emplacement. Geological Society of America Bulletin, 125(7-8): 1079-1113. https://doi.org/10.1130/b30877.1
      Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553-569. https://doi.org/10.1016/j.gsf.2014.02.005
      Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181-196. https://doi.org/10.2138/am-2018-6166
      Brown, M., Johnson, T., 2019. Metamorphism and the Evolution of Subduction on Earth. American Mineralogist, 104(8): 1065-1082. https://doi.org/10.2138/am-2019-6956
      Burov, E., Francois, T., Agard, P., et al., 2014. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212-250. https://doi.org/10.1016/j.tecto.2014.04.033
      Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
      Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 7: 173-174.
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1-2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      Chen, R. X., Zheng, Y. F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149-176. https://doi.org/10.1016/j.jseaes.2017.04.029
      Clemens, J. D., 2012. Granitic Magmatism, from Source to Emplacement: A Personal View. Applied Earth Science, 121(3): 107-136. https://doi.org/10.1179/1743275813y.0000000023
      Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
      Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting-Hot or Cold; Drenched, Damp or Dry? Earth-Science Reviews, 200: 102982. https://doi.org/10.1016/j.earscirev.2019.102982
      Collins, W. J., Huang, H. Q., Bowden, P., et al., 2020. Repeated S-I-A-Type Granite Trilogy in the Lachlan Orogen and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society, London, Special Publications, 491(1): 53-76. https://doi.org/10.1144/sp491-2018-159
      Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection? Earth and Planetary Science Letters, 163(1-4): 97-108. https://doi.org/10.1016/S0012-821X(98)00178-2
      Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A-Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125
      Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091-7613
      Dahlen, F. A., Suppe, J., Davis, D., 1984. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory. Journal of Geophysical Research: Solid Earth, 89(B12): 10087-10101. https://doi.org/10.1029/jb089ib12p10087
      Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. https://doi.org/10.1029/jb088ib02p01153
      De Graciansky, P. C., Roberts, D. G., Tricart, P., 2011. The Birth of the Western and Central Alps: Subduction, Obduction, Collision. In: De Graciansky, P. C., Tricart, P., Tricart, P., eds., The Western Alps, from Rift to Passive Margin to Orogenic Belt. Developments in Earth Surface Processes, 14: 289-315. https://doi.org/10.1016/S0928-2025(11)14014-6
      Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625-2647. https://doi.org/10.1029/jb075i014p02625
      Dewey, J. F., Horsfield, B., 1970. Plate Tectonics, Orogeny and Continental Growth. Nature, 225(5232): 521-525. https://doi.org/10.1038/225521a0
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613
      England, P. C., Thompson, A. B., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 25(4): 894-928. https://doi.org/10.1093/petrology/25.4.894
      England, P. C., Thompson, A. B., 1986. Some Thermal and Tectonic Models for Crustal Melting in Continental Collision Zones. Geological Society, London, Special Publications, 19(1): 83-94. https://doi.org/10.1144/gsl.sp.1986.019.01.05
      Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-Off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
      Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005
      Green, D. H., 1977. Introduction to the Symposium Experimental Petrology Related to Extreme Metamorphism. Tectonophysics, 43(1-2): 1-5. https://doi.org/10.1016/0040-1951(77)90002-6
      Guo, J., Zheng, Y. F., Zhao, Z. F., et al., 2022. Generation of Aluminous A-Type Granite by Partial Melting of Felsic Restite: Evidence from Mesozoic Granitoids in the Southern Margin of the North China Craton. Lithos, 428-429: 106837. https://doi.org/10.1016/j.lithos.2022.106837
      Harley, S. L., 2021. UHT Metamorphism. Encyclopedia of Geology, 2: 522-552. https://doi.org/10.1016/b978-0-12-409548-9.12543-6
      Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229-248. https://doi.org/10.1144/0016-76492009-072
      Holmquist, P. J., 1916. Swedish Archaean Structures and Their Meaning. Bulletin of the Geological Institute Upsala, 15: 125-148.
      Jaquet, Y., Duretz, T., Grujic, D., et al., 2018. Formation of Orogenic Wedges and Crustal Shear Zones by Thermal Softening, Associated Topographic Evolution and Application to Natural Orogens. Tectonophysics, 746: 512-529. https://doi.org/10.1016/j.tecto.2017.07.021
      Ji, M., Gao, X. Y., Zheng, Y. F., 2023. The Petrogenetic Relationship between Migmatite and Granite in the Himalayan Orogen: Petrological and Geochemical Constraints. Lithos, 444-445: 107110. https://doi.org/10.1016/j.lithos.2023.107110
      Ji, M., Gao, X. Y., Zheng, Y. F., et al., 2024a. Geochemical Variations of Anatectic Melts in Response to Changes of P-T-H2O Conditions: Implication for the Relationship between Dehydration and Hydration Melting in the Himalayan Orogen. Chemical Geology, 643: 121815. https://doi.org/10.1016/j.chemgeo.2023.121815
      Ji, M., Gao, X. Y., Xia, Q. X., et al., 2024b. Secular Change of Metamorphic Features in the Himalayan Orogen during the Cenozoic and Its Tectonic Implications. Earth-Science Reviews, 248: 104640. https://doi.org/10.1016/j.earscirev.2023.104640
      Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2
      Jiao, S. J., Brown, M., Mitchell, R. N., et al., 2023. Mechanisms to Generate Ultrahigh-Temperature Metamorphism. Nature Reviews Earth & Environment, 4(5): 298-318. https://doi.org/10.1038/s43017-023-00403-2
      Karig, D. E., Sharman, G. F., 1975. Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86(3): 377-389. https://doi.org/10.1130/0016-7606
      Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439(7076): 580-583. https://doi.org/10.1038/nature04505
      Keppie, D. F., 2015. How the Closure of Paleo-Tethys and Tethys Oceans Controlled the Early Breakup of Pangaea. Geology, 43(4): 335-338. https://doi.org/10.1130/g36268.1
      Keppie, D. F., 2016. How Subduction Broke up Pangaea with Implications for the Supercontinent Cycle. Geological Society, London, Special Publications, 424(1): 265-288. https://doi.org/10.1144/sp424.8
      King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Kranck, E. H., 1954. Deep Structures and Ultrametamorphism. Transactions of the New York Academy of Sciences, 16(5): 234-241. https://doi.org/10.1111/j.2164-0947.1954.tb00376.x
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Leonardos, O. H., Fyfe, W. S., 1974. Ultrametamorphism and Melting of a Continental Margin: The Rio de Janeiro Region, Brazil. Contributions to Mineralogy and Petrology, 46(3): 201-214. https://doi.org/10.1007/BF00487556
      Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200-201: 142-156. https://doi.org/10.1016/j.lithos.2014.04.014
      Li, H., Myint, A. Z., Yonezu, K., et al., 2018. Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar: Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 95: 575-592. https://doi.org/10.1016/j.oregeorev.2018.03.015
      Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468-468.
      Luo, X., Xia, Q. X., Zheng, Y. F., et al., 2022. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 33(3): 753-769. https://doi.org/10.1007/s12583-021-1547-3
      Malavieille, J., 2010. Impact of Erosion, Sedimentation, and Structural Heritage on the Structure and Kinematics of Orogenic Wedges: Analog Models and Case Studies. GSA Today, 20(1): 4-10. https://doi.org/10.1130/gsatg48a.1
      Mehnert, K. R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 393.
      Miyashiro, A., 1961. Evolution of Metamorphic Belts. Journal of Petrology, 2(3): 277-311. https://doi.org/10.1093/petrology/2.3.277
      Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
      Moyen, J. F., Janoušek, V., Laurent, O., et al., 2021. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 1, Granites and Paradigms. Lithos, 402-403: 106291. https://doi.org/10.1016/j.lithos.2021.106291
      Osanai, Y., Owada, M., Kawasaki, T., 1992. Tertiary Deep Crustal Ultrametamorphism in the Hidaka Metamorphic Belt, Northern Japan. Journal of Metamorphic Geology, 10: 401-414. doi: 10.1111/j.1525-1314.1992.tb00092.x
      Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613
      Patiño Douce, A. E., Johnston, A. D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. https://doi.org/10.1007/BF00310707
      Pattison, D. R. M., Goldsmith, S. A., 2022. Metamorphism of the Buchan Type-Area, NE Scotland and Its Relation to the Adjacent Barrovian Domain. Journal of the Geological Society, 179: jgs2021-040. https://doi.org/10.1144/jgs2021-040
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Platt, J. P., 1986. Dynamics of Orogenic Wedges and the Uplift of High-Pressure Metamorphic Rocks. Geological Society of America Bulletin, 97(9): 1037-1053. https://doi.org/10.1130/0016-7606
      Ramberg, II., 1952. The Origin of Metamorphic and Metasomatic Rocks. The University of Chicago Press, Chicago.
      Ryan, P. D., Dewey, J. F., 2019. The Sources of Metamorphic Heat during Collisional Orogeny: The Barrovian Enigma. Canadian Journal of Earth Sciences, 56(12): 1309-1317. https://doi.org/10.1139/cjes-2018-0182
      Sawyer, E. W., 2010. Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid. Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      Sawyer, E. W., Brown, M., 2008. Working with Migmatites. Mineralogical Association of Canada Short Course Series, 38: 1-158.
      Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
      Sederholm, J. J., 1907. On Granite and Gneiss, Their Origin, Relations and Occurrence in the Precambrian Complex of Fenno-Scandia. Bulletin de la Commission Géologique de la Finlande, 23: 1-110.
      Simon, M., Pitra, P., Yamato, P., et al., 2023. Isothermal Compression of an Eclogite from the Western Gneiss Region (Norway). Journal of Metamorphic Geology, 41(1): 181-203. https://doi.org/10.1111/jmg.12692
      Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522-545. https://doi.org/10.1016/j.gr.2012.12.011
      Soret, M., Larson, K. P., Cottle, J., et al., 2021. How Himalayan Collision Stems from Subduction. Geology, 49(8): 894-898. https://doi.org/10.1130/g48803.1
      Storey, B. C., 1995. The Role of Mantle Plumes in Continental Breakup: Case Histories from Gondwanaland. Nature, 377: 301-308. doi: 10.1038/377301a0
      Tang, Y. W., Chen, L., Zhao, Z. F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. GSA Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1
      Tarbuck, E. J., Lutgens, F. K., 1994. Earth Science. Macmillan College Publishing Company, New York, 659.
      Tavani, S., Granado, P., Corradetti, A., et al., 2021. Rift Inheritance Controls the Switch from Thin-to Thick-Skinned Thrusting and Basal Décollement Re-Localization at the Subduction-to-Collision Transition. Geological Society of America Bulletin, 133(9-10): 2157-2170. https://doi.org/10.1130/b35800.1
      Thompson, A. B., England, P. C., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism Ⅱ. Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks. Journal of Petrology, 25(4): 929-955. https://doi.org/10.1093/petrology/25.4.929
      Van Staal, C., Zagorevski, A., 2020. Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen. Geoscience Canada, 47(3): 103-118. https://doi.org/10.12789/geocanj.2020.47.161
      Vielzeuf, D., Vidal, Ph., 1990. Granulites and Crustal Evolution. Kluwer Academic Publishers, Dordrecht, 585.
      Viete, D. R., Oliver, G. J. H., Fraser, G. L., et al., 2013. Timing and Heat Sources for the Barrovian Metamorphism, Scotland. Lithos, 177: 148-163. https://doi.org/10.1016/j.lithos.2013.06.009
      Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 43(1-2): 7-22. https://doi.org/10.1016/0040-1951(77)90003-8
      Willett, S., Beaumont, C., Fullsack, P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology, 21(4): 371-374. https://doi.org/10.1130/0091-7613
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese). doi: 10.1360/N072016-00139
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3-4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
      Wyllie, P. J., 1977. Crustal Anatexis— An Experimental Review. Tectonophysics, 43(1-2): 41-71. https://doi.org/10.1016/0040-1951(77)90005-1
      Xia, Q. X., Yu, M., Zhu, E. L., et al., 2023a. Two Generations of Crustal Anatexis in Association with Two-Stage Exhumation of Ultrahigh-Pressure Metamorphic Rocks in the Dabie Orogen. Lithos, 446-447: 107146. https://doi.org/10.1016/j.lithos.2023.107146
      Xia, M., Zhang, Q. Q., Gao, X. Y., 2023b. Thermal Structure of the Paleo-Continental Subduction Zone: Insights from Quantitatively Constrained Prograde P-T Paths of Exhumed LT/UHP Eclogites in the Dabie Orogen. Geochemistry, Geophysics, Geosystems, 24(5): e2022GC010852. https://doi.org/10.1029/2022gc010852
      Xia, Q. X., Zheng, Y. F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3-4): 477-496. https://doi.org/10.1016/j.lithos.2009.04.015
      Yan, Q. S., Shi, X. F., 2014. Geochemistry and Petrogenesis of the Cretaceous A-Type Granites in the Laoshan Granitic Complex, Eastern China. Island Arc, 23(3): 221-235. https://doi.org/10.1111/iar.12070
      Yang, G., Chen, R. X., Zheng, Y. F., et al., 2023. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 34(3): 609-639. https://doi.org/10.1007/s12583-021-1487-y
      Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1-2): 1-131. https://doi.org/10.1016/j.earscirev.2005.05.004
      You, Z. D., 2014. Metamorphism under Extreme Conditions: Categories and Criteria. Earth Science Frontiers, 21(1): 32-39 (in Chinese with English abstract).
      Zen, E. A., 1988. Thermal Modelling of Stepwise Anatexis in a Thrust-Thickened Sialic Crust. Transaction of the Royal Society of Edinburgh: Earth Sciences, 79: 223-235. doi: 10.1017/S0263593300014231
      Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939-960. https://doi.org/10.1016/j.gr.2011.11.004
      Zhang, L. F., 2007. Extreme Metamorphism: The Frontier of Metamorphic Geology. Earth Science Frontiers, 14(1): 33-42 (in Chinese with English abstract).
      Zhang, Q. Q., Gao, X. Y., Chen, R. X., et al., 2023. Metamorphic Evolution of the East Tethys Tectonic Domain and Its Tectonic Implications. Scientia Sinica Terrae, 53(12): 2723-2749 (in Chinese). doi: 10.1360/SSTe-2023-0206
      Zhao, Z. F., Liu, Z. B., Chen, Q., 2017. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038
      Zheng, Y. F., 2021. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. Encyclopedia of Geology. Elsevier, Amsterdam, 868-878. https://doi.org/10.1016/b978-0-08-102908-4.00016-3
      Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Journal of Earth Science, 33(5): 1320. https://doi.org/10.1007/s12583-022-1747-5
      Zheng, Y. F., 2022. Earth system Science of Convergent Plate Margins. Science Press, Beijing (in Chinese).
      Zheng, Y. F., 2023. Plate Tectonics in the 21st Century. Scientia Sinica Terrae, 53(1): 1-40 (in Chinese). doi: 10.1360/SSTe-2022-0229
      Zheng, Y. F., 2024. The Archean Geology and Plate Tectonics: Observation versus Interpretation. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese). doi: 10.1360/SSTe-2023-0186
      Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      Zheng, Y. F., Chen, R. X., 2021. Extreme Metamorphism and Metamorphic Facies Series at Convergent Plate Boundaries: Implications for Supercontinent Dynamics. Geosphere, 17(6): 1647-1685. https://doi.org/10.1130/ges02334.1
      Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Scientia Sinica Terrae, 46(3): 253-286 (in Chinese). doi: 10.1360/N072015-00493
      Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y. F., Chen, Y. X., 2016. Continental versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
      Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonic Theory: From Oceanic Subduction Zones to Collisional Orogenic Belts. Scientia Sinica Terrae, 45(6): 711-735 (in Chinese). doi: 10.1360/zd-2015-45-6-711
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      Zheng, Y. F., Miller, C. F., Xu, X. S., et al., 2021. Introduction to the Origin of Granites and Related Rocks. Lithos, 402-403: 106380. https://doi.org/10.1016/j.lithos.2021.106380
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y. F., Ye, K., Zhang, L. F., 2009. Developing the Plate Tectonics: From Oceanic Subduction to Continental Collision. Chinese Science Bulletin, 54(13): 1799-1803 (in Chinese). doi: 10.1360/csb2009-54-13-1799
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zheng, Y. F., Zhao, Z. F., Chen, R. X., 2019. Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: Compositional Inheritance and Metamorphic Modification. Geological Society, London, Special Publications, 474(1): 89-132. https://doi.org/10.1144/sp474.9
      Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Process: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(23): 2233-2239 (in Chinese). doi: 10.1360/csb2013-58-23-2233
      Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      游振东, 2014. 极端条件下的变质作用: 范畴与标志. 地学前缘, 21(1): 32-39.
      张立飞, 2007. 极端条件下的变质作用——变质地质学研究的前沿. 地学前缘, 14(1): 33-42.
      张强强, 高晓英, 陈仁旭, 等, 2023. 东特提斯构造域变质演化及其构造启示. 中国科学: 地球科学, 53(12): 2723-2749.
      郑永飞, 2022. 汇聚板块边缘地球系统科学. 北京: 科学出版社.
      郑永飞, 2023.21世纪板块构造. 中国科学: 地球科学, 53(1): 1-40.
      郑永飞, 2024. 太古宙地质与板块构造: 观察与解释. 中国科学: 地球科学, 54(1): 1-30.
      郑永飞, 陈仁旭, 徐峥, 等, 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253-286.
      郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
      郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735.
      郑永飞, 叶凯, 张立飞, 2009. 发展板块构造: 从洋壳俯冲到大陆碰撞. 科学通报, 54(13): 1799-1803.
      郑永飞, 赵子福, 陈伊翔, 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58(23): 2233-2239.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(19)

      Article views (2195) PDF downloads(467) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return