Citation: | Zheng Yongfei, Chen Renxu, Gao Peng, 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28. doi: 10.3799/dqkx.2023.215 |
Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17-22. https://doi.org/10.1038/307017a0
|
Ashworth, J. R., Brown, M., 1990. High-Temperature Metamorphism and Crustal Anatexis. Kluwer Academic Publishers, Dordrecht, 407.
|
Ballato, P., Uba, C. E., Landgraf, A., et al., 2011. Arabia-Eurasia Continental Collision: Insights from Late Tertiary Foreland-Basin Evolution in the Alborz Mountains, Northern Iran. Geological Society of America Bulletin, 123(1-2): 106-131. https://doi.org/10.1130/b30091.1
|
Bartoli, O., 2021. Granite Geochemistry is not Diagnostic of the Role of Water in the Source. Earth and Planetary Science Letters, 564: 116927. https://doi.org/10.1016/j.epsl.2021.116927
|
Beaumont, C., Ellis, S., Hamilton, J., et al., 1996. Mechanical Model for Subduction-Collision Tectonics of Alpine-Type Compressional Orogens. Geology, 24(8): 675-678. https://doi.org/10.1130/0091-7613
|
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
|
Brown, G. C., Fyfe, W. S., 1970. The Production of Granitic Melts during Ultrametamorphism. Contributions to Mineralogy and Petrology, 28(4): 310-318. https://doi.org/10.1007/BF00388953
|
Brown, M., 1993. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 150(2): 227-241. https://doi.org/10.1144/gsjgs.150.2.0227
|
Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961-964. https://doi.org/10.1130/g22853a.1
|
Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193-234. https://doi.org/10.2747/0020-6814.49.3.193
|
Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
|
Brown, M., 2013. Granite: From Genesis to Emplacement. Geological Society of America Bulletin, 125(7-8): 1079-1113. https://doi.org/10.1130/b30877.1
|
Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553-569. https://doi.org/10.1016/j.gsf.2014.02.005
|
Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181-196. https://doi.org/10.2138/am-2018-6166
|
Brown, M., Johnson, T., 2019. Metamorphism and the Evolution of Subduction on Earth. American Mineralogist, 104(8): 1065-1082. https://doi.org/10.2138/am-2019-6956
|
Burov, E., Francois, T., Agard, P., et al., 2014. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212-250. https://doi.org/10.1016/j.tecto.2014.04.033
|
Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
|
Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
|
Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
|
Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 7: 173-174.
|
Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
|
Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
|
Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
|
Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1-2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
|
Chen, R. X., Zheng, Y. F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149-176. https://doi.org/10.1016/j.jseaes.2017.04.029
|
Clemens, J. D., 2012. Granitic Magmatism, from Source to Emplacement: A Personal View. Applied Earth Science, 121(3): 107-136. https://doi.org/10.1179/1743275813y.0000000023
|
Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
|
Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting-Hot or Cold; Drenched, Damp or Dry? Earth-Science Reviews, 200: 102982. https://doi.org/10.1016/j.earscirev.2019.102982
|
Collins, W. J., Huang, H. Q., Bowden, P., et al., 2020. Repeated S-I-A-Type Granite Trilogy in the Lachlan Orogen and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society, London, Special Publications, 491(1): 53-76. https://doi.org/10.1144/sp491-2018-159
|
Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection? Earth and Planetary Science Letters, 163(1-4): 97-108. https://doi.org/10.1016/S0012-821X(98)00178-2
|
Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A-Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125
|
Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091-7613
|
Dahlen, F. A., Suppe, J., Davis, D., 1984. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory. Journal of Geophysical Research: Solid Earth, 89(B12): 10087-10101. https://doi.org/10.1029/jb089ib12p10087
|
Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. https://doi.org/10.1029/jb088ib02p01153
|
De Graciansky, P. C., Roberts, D. G., Tricart, P., 2011. The Birth of the Western and Central Alps: Subduction, Obduction, Collision. In: De Graciansky, P. C., Tricart, P., Tricart, P., eds., The Western Alps, from Rift to Passive Margin to Orogenic Belt. Developments in Earth Surface Processes, 14: 289-315.
|
Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625-2647. https://doi.org/10.1029/jb075i014p02625
|
Dewey, J. F., Horsfield, B., 1970. Plate Tectonics, Orogeny and Continental Growth. Nature, 225(5232): 521-525. https://doi.org/10.1038/225521a0
|
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613
|
England, P. C., Thompson, A. B., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 25(4): 894-928. https://doi.org/10.1093/petrology/25.4.894
|
England, P. C., Thompson, A. B., 1986. Some Thermal and Tectonic Models for Crustal Melting in Continental Collision Zones. Geological Society, London, Special Publications, 19(1): 83-94. https://doi.org/10.1144/gsl.sp.1986.019.01.05
|
Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-Off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
|
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
|
Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
|
Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005
|
Green, D. H., 1977. Introduction to the Symposium Experimental Petrology Related to Extreme Metamorphism. Tectonophysics, 43(1-2): 1-5. https://doi.org/10.1016/0040-1951(77)90002-6
|
Guo, J., Zheng, Y. F., Zhao, Z. F., et al., 2022. Generation of Aluminous A-Type Granite by Partial Melting of Felsic Restite: Evidence from Mesozoic Granitoids in the Southern Margin of the North China Craton. Lithos, 428-429: 106837. https://doi.org/10.1016/j.lithos.2022.106837
|
Harley, S. L., 2021. UHT Metamorphism. Encyclopedia of Geology, 2: 522-552. https://doi.org/10.1016/b978-0-12-409548-9.12543-6
|
Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229-248. https://doi.org/10.1144/0016-76492009-072
|
Holmquist, P. J., 1916. Swedish Archaean Structures and Their Meaning. Bulletin of the Geological Institute Upsala, 15: 125-148.
|
Jaquet, Y., Duretz, T., Grujic, D., et al., 2018. Formation of Orogenic Wedges and Crustal Shear Zones by Thermal Softening, Associated Topographic Evolution and Application to Natural Orogens. Tectonophysics, 746: 512-529. https://doi.org/10.1016/j.tecto.2017.07.021
|
Ji, M., Gao, X. Y., Zheng, Y. F., 2023. The Petrogenetic Relationship between Migmatite and Granite in the Himalayan Orogen: Petrological and Geochemical Constraints. Lithos, 444-445: 107110. https://doi.org/10.1016/j.lithos.2023.107110
|
Ji, M., Gao, X. Y., Zheng, Y. F., et al., 2024a. Geochemical Variations of Anatectic Melts in Response to Changes of P-T-H2O Conditions: Implication for the Relationship between Dehydration and Hydration Melting in the Himalayan Orogen. Chemical Geology, 643: 121815. https://doi.org/10.1016/j.chemgeo.2023.121815
|
Ji, M., Gao, X. Y., Xia, Q. X., et al., 2024b. Secular Change of Metamorphic Features in the Himalayan Orogen during the Cenozoic and Its Tectonic Implications. Earth-Science Reviews, 248: 104640. https://doi.org/10.1016/j.earscirev.2023.104640
|
Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2
|
Jiao, S. J., Brown, M., Mitchell, R. N., et al., 2023. Mechanisms to Generate Ultrahigh-Temperature Metamorphism. Nature Reviews Earth & Environment, 4(5): 298-318. https://doi.org/10.1038/s43017-023-00403-2
|
Karig, D. E., Sharman, G. F., 1975. Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86(3): 377-389. https://doi.org/10.1130/0016-7606
|
Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
|
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
|
Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439(7076): 580-583. https://doi.org/10.1038/nature04505
|
Keppie, D. F., 2015. How the Closure of Paleo-Tethys and Tethys Oceans Controlled the Early Breakup of Pangaea. Geology, 43(4): 335-338. https://doi.org/10.1130/g36268.1
|
Keppie, D. F., 2016. How Subduction Broke up Pangaea with Implications for the Supercontinent Cycle. Geological Society, London, Special Publications, 424(1): 265-288. https://doi.org/10.1144/sp424.8
|
King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
|
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
|
Kranck, E. H., 1954. Deep Structures and Ultrametamorphism. Transactions of the New York Academy of Sciences, 16(5): 234-241. https://doi.org/10.1111/j.2164-0947.1954.tb00376.x
|
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
|
Leonardos, O. H., Fyfe, W. S., 1974. Ultrametamorphism and Melting of a Continental Margin: The Rio de Janeiro Region, Brazil. Contributions to Mineralogy and Petrology, 46(3): 201-214. https://doi.org/10.1007/BF00487556
|
Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200-201: 142-156. https://doi.org/10.1016/j.lithos.2014.04.014
|
Li, H., Myint, A. Z., Yonezu, K., et al., 2018. Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar: Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 95: 575-592. https://doi.org/10.1016/j.oregeorev.2018.03.015
|
Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468-468.
|
Luo, X., Xia, Q. X., Zheng, Y. F., et al., 2022. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 33(3): 753-769. https://doi.org/10.1007/s12583-021-1547-3
|
Malavieille, J., 2010. Impact of Erosion, Sedimentation, and Structural Heritage on the Structure and Kinematics of Orogenic Wedges: Analog Models and Case Studies. GSA Today, 20(1): 4-10. https://doi.org/10.1130/gsatg48a.1
|
Mehnert, K. R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 393.
|
Miyashiro, A., 1961. Evolution of Metamorphic Belts. Journal of Petrology, 2(3): 277-311. https://doi.org/10.1093/petrology/2.3.277
|
Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
|
Moyen, J. F., Janoušek, V., Laurent, O., et al., 2021. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 1, Granites and Paradigms. Lithos, 402-403: 106291. https://doi.org/10.1016/j.lithos.2021.106291
|
Osanai, Y., Owada, M., Kawasaki, T., 1992. Tertiary Deep Crustal Ultrametamorphism in the Hidaka Metamorphic Belt, Northern Japan. Journal of Metamorphic Geology, 10: 401-414. doi: 10.1111/j.1525-1314.1992.tb00092.x
|
Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613
|
Patiño Douce, A. E., Johnston, A. D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. https://doi.org/10.1007/BF00310707
|
Pattison, D. R. M., Goldsmith, S. A., 2022. Metamorphism of the Buchan Type-Area, NE Scotland and Its Relation to the Adjacent Barrovian Domain. Journal of the Geological Society, 179: jgs2021-040. https://doi.org/10.1144/jgs2021-040
|
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
|
Platt, J. P., 1986. Dynamics of Orogenic Wedges and the Uplift of High-Pressure Metamorphic Rocks. Geological Society of America Bulletin, 97(9): 1037-1053. https://doi.org/10.1130/0016-7606
|
Ramberg, II., 1952. The Origin of Metamorphic and Metasomatic Rocks. The University of Chicago Press, Chicago.
|
Ryan, P. D., Dewey, J. F., 2019. The Sources of Metamorphic Heat during Collisional Orogeny: The Barrovian Enigma. Canadian Journal of Earth Sciences, 56(12): 1309-1317. https://doi.org/10.1139/cjes-2018-0182
|
Sawyer, E. W., 2010. Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid. Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
|
Sawyer, E. W., Brown, M., 2008. Working with Migmatites. Mineralogical Association of Canada Short Course Series, 38: 1-158.
|
Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
|
Sederholm, J. J., 1907. On Granite and Gneiss, Their Origin, Relations and Occurrence in the Precambrian Complex of Fenno-Scandia. Bulletin de la Commission Géologique de la Finlande, 23: 1-110.
|
Simon, M., Pitra, P., Yamato, P., et al., 2023. Isothermal Compression of an Eclogite from the Western Gneiss Region (Norway). Journal of Metamorphic Geology, 41(1): 181-203. https://doi.org/10.1111/jmg.12692
|
Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522-545. https://doi.org/10.1016/j.gr.2012.12.011
|
Soret, M., Larson, K. P., Cottle, J., et al., 2021. How Himalayan Collision Stems from Subduction. Geology, 49(8): 894-898. https://doi.org/10.1130/g48803.1
|
Storey, B. C., 1995. The Role of Mantle Plumes in Continental Breakup: Case Histories from Gondwanaland. Nature, 377: 301-308. doi: 10.1038/377301a0
|
Tang, Y. W., Chen, L., Zhao, Z. F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. GSA Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1
|
Tarbuck, E. J., Lutgens, F. K., 1994. Earth Science. Macmillan College Publishing Company, New York, 659.
|
Tavani, S., Granado, P., Corradetti, A., et al., 2021. Rift Inheritance Controls the Switch from Thin-to Thick-Skinned Thrusting and Basal Décollement Re-Localization at the Subduction-to-Collision Transition. Geological Society of America Bulletin, 133(9-10): 2157-2170. https://doi.org/10.1130/b35800.1
|
Thompson, A. B., England, P. C., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism Ⅱ. Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks. Journal of Petrology, 25(4): 929-955. https://doi.org/10.1093/petrology/25.4.929
|
Van Staal, C., Zagorevski, A., 2020. Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen. Geoscience Canada, 47(3): 103-118. https://doi.org/10.12789/geocanj.2020.47.161
|
Vielzeuf, D., Vidal, Ph., 1990. Granulites and Crustal Evolution. Kluwer Academic Publishers, Dordrecht, 585.
|
Viete, D. R., Oliver, G. J. H., Fraser, G. L., et al., 2013. Timing and Heat Sources for the Barrovian Metamorphism, Scotland. Lithos, 177: 148-163. https://doi.org/10.1016/j.lithos.2013.06.009
|
Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
|
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
|
White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 43(1-2): 7-22. https://doi.org/10.1016/0040-1951(77)90003-8
|
Willett, S., Beaumont, C., Fullsack, P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology, 21(4): 371-374. https://doi.org/10.1130/0091-7613
|
Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
|
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese). doi: 10.1360/N072016-00139
|
Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
|
Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3-4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
|
Wyllie, P. J., 1977. Crustal Anatexis— An Experimental Review. Tectonophysics, 43(1-2): 41-71. https://doi.org/10.1016/0040-1951(77)90005-1
|
Xia, Q. X., Yu, M., Zhu, E. L., et al., 2023a. Two Generations of Crustal Anatexis in Association with Two-Stage Exhumation of Ultrahigh-Pressure Metamorphic Rocks in the Dabie Orogen. Lithos, 446-447: 107146. https://doi.org/10.1016/j.lithos.2023.107146
|
Xia, M., Zhang, Q. Q., Gao, X. Y., 2023b. Thermal Structure of the Paleo-Continental Subduction Zone: Insights from Quantitatively Constrained Prograde P-T Paths of Exhumed LT/UHP Eclogites in the Dabie Orogen. Geochemistry, Geophysics, Geosystems, 24(5): e2022GC010852. https://doi.org/10.1029/2022gc010852
|
Xia, Q. X., Zheng, Y. F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3-4): 477-496. https://doi.org/10.1016/j.lithos.2009.04.015
|
Yan, Q. S., Shi, X. F., 2014. Geochemistry and Petrogenesis of the Cretaceous A-Type Granites in the Laoshan Granitic Complex, Eastern China. Island Arc, 23(3): 221-235. https://doi.org/10.1111/iar.12070
|
Yang, G., Chen, R. X., Zheng, Y. F., et al., 2023. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 34(3): 609-639. https://doi.org/10.1007/s12583-021-1487-y
|
Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
|
Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1-2): 1-131. https://doi.org/10.1016/j.earscirev.2005.05.004
|
You, Z. D., 2014. Metamorphism under Extreme Conditions: Categories and Criteria. Earth Science Frontiers, 21(1): 32-39 (in Chinese with English abstract).
|
Zen, E. A., 1988. Thermal Modelling of Stepwise Anatexis in a Thrust-Thickened Sialic Crust. Transaction of the Royal Society of Edinburgh: Earth Sciences, 79: 223-235. doi: 10.1017/S0263593300014231
|
Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939-960. https://doi.org/10.1016/j.gr.2011.11.004
|
Zhang, L. F., 2007. Extreme Metamorphism: The Frontier of Metamorphic Geology. Earth Science Frontiers, 14(1): 33-42 (in Chinese with English abstract).
|
Zhang, Q. Q., Gao, X. Y., Chen, R. X., et al., 2023. Metamorphic Evolution of the East Tethys Tectonic Domain and Its Tectonic Implications. Scientia Sinica Terrae, 53(12): 2723-2749 (in Chinese). doi: 10.1360/SSTe-2023-0206
|
Zhao, Z. F., Liu, Z. B., Chen, Q., 2017. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038
|
Zheng, Y. F., 2021. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. Encyclopedia of Geology. Elsevier, Amsterdam, 868-878.
|
Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Journal of Earth Science, 33(5): 1320. https://doi.org/10.1007/s12583-022-1747-5
|
Zheng, Y. F., 2022. Earth system Science of Convergent Plate Margins. Science Press, Beijing (in Chinese).
|
Zheng, Y. F., 2023. Plate Tectonics in the 21st Century. Scientia Sinica Terrae, 53(1): 1-40 (in Chinese). doi: 10.1360/SSTe-2022-0229
|
Zheng, Y. F., 2024. The Archean Geology and Plate Tectonics: Observation versus Interpretation. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese). doi: 10.1360/SSTe-2023-0186
|
Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
|
Zheng, Y. F., Chen, R. X., 2021. Extreme Metamorphism and Metamorphic Facies Series at Convergent Plate Boundaries: Implications for Supercontinent Dynamics. Geosphere, 17(6): 1647-1685. https://doi.org/10.1130/ges02334.1
|
Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Scientia Sinica Terrae, 46(3): 253-286 (in Chinese). doi: 10.1360/N072015-00493
|
Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
|
Zheng, Y. F., Chen, Y. X., 2016. Continental versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
|
Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
|
Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonic Theory: From Oceanic Subduction Zones to Collisional Orogenic Belts. Scientia Sinica Terrae, 45(6): 711-735 (in Chinese). doi: 10.1360/zd-2015-45-6-711
|
Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
|
Zheng, Y. F., Miller, C. F., Xu, X. S., et al., 2021. Introduction to the Origin of Granites and Related Rocks. Lithos, 402-403: 106380. https://doi.org/10.1016/j.lithos.2021.106380
|
Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
|
Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
|
Zheng, Y. F., Ye, K., Zhang, L. F., 2009. Developing the Plate Tectonics: From Oceanic Subduction to Continental Collision. Chinese Science Bulletin, 54(13): 1799-1803 (in Chinese). doi: 10.1360/csb2009-54-13-1799
|
Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
|
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
|
Zheng, Y. F., Zhao, Z. F., Chen, R. X., 2019. Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: Compositional Inheritance and Metamorphic Modification. Geological Society, London, Special Publications, 474(1): 89-132. https://doi.org/10.1144/sp474.9
|
Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Process: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(23): 2233-2239 (in Chinese). doi: 10.1360/csb2013-58-23-2233
|
Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
|
吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
|
吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
|
游振东, 2014. 极端条件下的变质作用: 范畴与标志. 地学前缘, 21(1): 32-39.
|
张立飞, 2007. 极端条件下的变质作用——变质地质学研究的前沿. 地学前缘, 14(1): 33-42.
|
张强强, 高晓英, 陈仁旭, 等, 2023. 东特提斯构造域变质演化及其构造启示. 中国科学: 地球科学, 53(12): 2723-2749.
|
郑永飞, 2022. 汇聚板块边缘地球系统科学. 北京: 科学出版社.
|
郑永飞, 2023.21世纪板块构造. 中国科学: 地球科学, 53(1): 1-40.
|
郑永飞, 2024. 太古宙地质与板块构造: 观察与解释. 中国科学: 地球科学, 54(1): 1-30.
|
郑永飞, 陈仁旭, 徐峥, 等, 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253-286.
|
郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
|
郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735.
|
郑永飞, 叶凯, 张立飞, 2009. 发展板块构造: 从洋壳俯冲到大陆碰撞. 科学通报, 54(13): 1799-1803.
|
郑永飞, 赵子福, 陈伊翔, 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58(23): 2233-2239.
|